662 resultados para Rearrangements


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esophageal adenocarcinoma (EAC) is a severe cancer that has been on the rise in Western nations over the past few decades. It has a high mortality rate and the 5-year survival rate is only 35%–45%. EAC has been included in a group of tumors with one of the highest rates of copy number alterations (CNAs), somatic structural rearrangements, high mutation frequency, with different mutational signatures, and with epigenetic mechanisms. The vast heterogeneity of EAC mutations makes it challenging to comprehend the biology that underlies tumor onset and development, identify prognostic biomarkers, and define a molecular classification to stratify patients. The only way to resolve the current disagreements is through an exhaustive molecular analysis of EAC. We examined the genetic profile of 164 patients' esophageal adenocarcinoma samples (without chemo-radiotherapy). The included patients did not receive neoadjuvant therapies, which can change the genetic and molecular composition of the tumor. Using next-generation sequencing technologies (NGS) at high coverage, we examined a custom panel of 26 cancer-related genes. Over the entire cohort, 337 variants were found, with the TP53 gene showing the most frequent alteration (67.27%). Poorer cancer-specific survival was associated with missense mutations in the TP53 gene (Log Rank P=0.0197). We discovered HNF1alpha gene disruptive mutations in 7 cases that were also affected by other gene changes. We started to investigate its role in EAC cell lines by silencing HNF1alpha to mimic our EAC cohort and we use Seahorse technique to analyze its role in the metabolism in esophageal cell. No significant changes were found in transfected cell lines. We conclude by finding that a particular class of TP53 mutations (missense changes) adversely impacted cancer-specific survival in EAC. HNF1alpha, a new EAC-mutated gene, was found, but more research is required to fully understand its function as a tumor suppressor gene.