886 resultados para ROBOTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nos últimos anos, as tecnologias que dão suporte à robótica avançaram expressivamente. É possível encontrar robôs de serviço nos mais variados campos. O próximo passo é o desenvolvimento de robôs inteligentes, com capacidade de comunicação em linguagem falada e de realizar trabalhos úteis em interação/cooperação com humanos. Torna-se necessário, então, encontrar um modo de interagir eficientemente com esses robôs, e com agentes inteligentes de maneira geral, que permita a transmissão de conhecimento em ambos os sentidos. Partiremos da hipótese de que é possível desenvolver um sistema de diálogo baseado em linguagem natural falada que resolva esse problema. Assim, o objetivo principal deste trabalho é a definição, implementação e avaliação de um sistema de diálogo utilizável na interação baseada em linguagem natural falada entre humanos e agentes inteligentes. Ao longo deste texto, mostraremos os principais aspectos da comunicação por linguagem falada, tanto entre os humanos, como também entre humanos e máquinas. Apresentaremos as principais categorias de sistemas de diálogo, com exemplos de alguns sistemas implementados, assim como ferramentas para desenvolvimento e algumas técnicas de avaliação. A seguir, entre outros aspectos, desenvolveremos os seguintes: a evolução levada a efeito na arquitetura computacional do Carl, robô utilizado neste trabalho; o módulo de aquisição e gestão de conhecimento, desenvolvido para dar suporte à interação; e o novo gestor de diálogo, baseado na abordagem de “Estado da Informação”, também concebido e implementado no âmbito desta tese. Por fim, uma avaliação experimental envolvendo a realização de diversas tarefas de interação com vários participantes voluntários demonstrou ser possível interagir com o robô e realizar as tarefas solicitadas. Este trabalho experimental incluiu avaliação parcial de funcionalidades, avaliação global do sistema de diálogo e avaliação de usabilidade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta tese propõe uma forma diferente de navegação de robôs em ambientes dinâmicos, onde o robô tira partido do movimento de pedestres, com o objetivo de melhorar as suas capacidades de navegação. A ideia principal é que, ao invés de tratar as pessoas como obstáculos dinâmicos que devem ser evitados, elas devem ser tratadas como agentes especiais com conhecimento avançado em navegação em ambientes dinâmicos. Para se beneficiar do movimento de pedestres, este trabalho propõe que um robô os selecione e siga, de modo que possa mover-se por caminhos ótimos, desviar-se de obstáculos não detetados, melhorar a navegação em ambientes densamente populados e aumentar a sua aceitação por outros humanos. Para atingir estes objetivos, novos métodos são desenvolvidos na área da seleção de líderes, onde duas técnicas são exploradas. A primeira usa métodos de previsão de movimento, enquanto a segunda usa técnicas de aprendizagem por máquina, para avaliar a qualidade de candidatos a líder, onde o treino é feito com exemplos reais. Os métodos de seleção de líder são integrados com algoritmos de planeamento de movimento e experiências são realizadas para validar as técnicas propostas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis addresses the problem of word learning in computational agents. The motivation behind this work lies in the need to support language-based communication between service robots and their human users, as well as grounded reasoning using symbols relevant for the assigned tasks. The research focuses on the problem of grounding human vocabulary in robotic agent’s sensori-motor perception. Words have to be grounded in bodily experiences, which emphasizes the role of appropriate embodiments. On the other hand, language is a cultural product created and acquired through social interactions. This emphasizes the role of society as a source of linguistic input. Taking these aspects into account, an experimental scenario is set up where a human instructor teaches a robotic agent the names of the objects present in a visually shared environment. The agent grounds the names of these objects in visual perception. Word learning is an open-ended problem. Therefore, the learning architecture of the agent will have to be able to acquire words and categories in an openended manner. In this work, four learning architectures were designed that can be used by robotic agents for long-term and open-ended word and category acquisition. The learning methods used in these architectures are designed for incrementally scaling-up to larger sets of words and categories. A novel experimental evaluation methodology, that takes into account the openended nature of word learning, is proposed and applied. This methodology is based on the realization that a robot’s vocabulary will be limited by its discriminatory capacity which, in turn, depends on its sensors and perceptual capabilities. An extensive set of systematic experiments, in multiple experimental settings, was carried out to thoroughly evaluate the described learning approaches. The results indicate that all approaches were able to incrementally acquire new words and categories. Although some of the approaches could not scale-up to larger vocabularies, one approach was shown to learn up to 293 categories, with potential for learning many more.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is necessary to transform the educative experiences into the classrooms so that they favor the development of intellectual abilities of children and teenagers. We must take advantage of the new opportunities that offer information technologies to organize learning environments which they favor those experiences. We considered that to arm and to program robots, of the type of LEGO Mind Storms or the so called “crickets”, developed by M. Resnik from MIT, like means so that they children them and young people live experiences that favor the development of their intellectual abilities, is a powerful alternative to the traditional educative systems. They are these three tasks those that require a reflective work from pedagogy and epistemology urgently. Robotics could become in the proper instrument for the development of intelligence because it works like a mirror for the intellectual processes of each individual, its abilities like epistemologist and, therefore, is useful to favor those processes in the classroom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Face detection and recognition should be complemented by recognition of facial expression, for example for social robots which must react to human emotions. Our framework is based on two multi-scale representations in cortical area V1: keypoints at eyes, nose and mouth are grouped for face detection [1]; lines and edges provide information for face recognition [2].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most simultaneous localisation and mapping (SLAM) solutions were developed for navigation of non-cognitive robots. By using a variety of sensors, the distances to walls and other objects are determined, which are then used to generate a map of the environment and to update the robot’s position. When developing a cognitive robot, such a solution is not appropriate since it requires accurate sensors and precise odometry, also lacking fundamental features of cognition such as time and memory. In this paper we present a SLAM solution in which such features are taken into account and integrated. Moreover, this method does not require precise odometry nor accurate ranging sensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human-robot interaction is an interdisciplinary research area which aims at integrating human factors, cognitive psychology and robot technology. The ultimate goal is the development of social robots. These robots are expected to work in human environments, and to understand behavior of persons through gestures and body movements. In this paper we present a biological and realtime framework for detecting and tracking hands. This framework is based on keypoints extracted from cortical V1 end-stopped cells. Detected keypoints and the cells’ responses are used to classify the junction type. By combining annotated keypoints in a hierarchical, multi-scale tree structure, moving and deformable hands can be segregated, their movements can be obtained, and they can be tracked over time. By using hand templates with keypoints at only two scales, a hand’s gestures can be recognized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic, infrared, laser and other sensors are being applied in robotics. Although combinations of these have allowed robots to navigate, they are only suited for specific scenarios, depending on their limitations. Recent advances in computer vision are turning cameras into useful low-cost sensors that can operate in most types of environments. Cameras enable robots to detect obstacles, recognize objects, obtain visual odometry, detect and recognize people and gestures, among other possibilities. In this paper we present a completely biologically inspired vision system for robot navigation. It comprises stereo vision for obstacle detection, and object recognition for landmark-based navigation. We employ a novel keypoint descriptor which codes responses of cortical complex cells. We also present a biologically inspired saliency component, based on disparity and colour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de mestrado, Educação (Tecnologias de Informação e Comunicação e Educação), Universidade de Lisboa, Instituto de Educação, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon assets have the value of carbon emission reduction in enterprises and are closely relevant to business images and competitiveness. In this paper, the connotation of carbon assets is clarified. The definition of carbon assets in enterprise business contexts are also provided. In addition, an interactive evolution framework is established to demonstrate the emergent property of carbon assets using multi-agent-based simulation, which can bring a new perspective for enterprises to manage their carbon assets and improve low-carbon competitiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pós-graduação em Ciência da Computação - IBILCE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo Automação e Electrónica Industrial

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uma linha de pesquisa e desenvolvimento na área da robótica, que tem recebido atenção crescente nos últimos anos, é o desenvolvimento de robôs biologicamente inspirados. A ideia é adquirir conhecimento de seres biológicos, cuja evolução ocorreu ao longo de milhões de anos, e aproveitar o conhecimento assim adquirido para implementar a locomoção pelos mesmos métodos (ou pelo menos usar a inspiração biológica) nas máquinas que se constroem. Acredita-se que desta forma é possível desenvolver máquinas com capacidades semelhantes às dos seres biológicos em termos de capacidade e eficiência energética de locomoção. Uma forma de compreender melhor o funcionamento destes sistemas, sem a necessidade de desenvolver protótipos dispendiosos e com longos tempos de desenvolvimento é usar modelos de simulação. Com base nestas ideias, o objectivo deste trabalho passa por efectuar um estudo da biomecânica da santola (Maja brachydactyla), uma espécie de caranguejo comestível pertencente à família Majidae de artrópodes decápodes, usando a biblioteca de ferramentas SimMechanics da aplicação Matlab / Simulink. Esta tese descreve a anatomia e locomoção da santola, a sua modelação biomecânica e a simulação do seu movimento no ambiente Matlab / SimMechanics e SolidWorks.