974 resultados para RNase H assay
Resumo:
RNase mitochondrial RNA processing enzyme (MRP) is a nucleolar ribonucleoprotein particle that participates in 5.8S ribosomal RNA maturation in eukaryotes. This enzyme shares a polypeptide and an RNA structural motif with ribonuclease P (RNase P), a nuclear endoribonuclease originally described in the nucleus that processes RNA transcripts to generate their mature 5' termini. Both enzymes are also located in mitochondria. This report further characterizes the relationship between RNase MRP and RNase P. Antisense affinity selection with biotinylated 2'-O-methyl oligoribonucleotides and glycerol gradient fractionation experiments demonstrated that small subpopulations of RNase MRP and RNase P associate with each other in vivo in macromolecular complex, possibly 60-80S preribosomes. This latter notion was supported by fluorescence in situ hybridization experiments with antisense oligonucleotides that localized that RNA components of RNase MRP and RNase P to the nucleolus and to discrete cytoplasmic structures. These findings suggest that small subpopulations of RNase MRP and RNase P are physically associated, and that both may function in ribosomal RNA maturation or ribosome assembly.
Resumo:
Precise mapping of DNA methylation patterns in CpG islands has become essential for understanding diverse biological processes such as the regulation of imprinted genes, X chromosome inactivation, and tumor suppressor gene silencing in human cancer. We describe a new method, MSP (methylation-specific PCR), which can rapidly assess the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes. This assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. MSP eliminates the false positive results inherent to previous PCR-based approaches which relied on differential restriction enzyme cleavage to distinguish methylated from unmethylated DNA. In this study, we demonstrate the use of MSP to identify promoter region hypermethylation changes associated with transcriptional inactivation in four important tumor suppressor genes (p16, p15, E-cadherin, and von Hippel-Lindau) in human cancer.
Resumo:
To study the cleavage mechanism of bacterial Nase P RNA, we have synthesized precursor tRNA substrates carrying a single Rp- or Sp-phosphorothioate modification at the RNase P cleavage site. Both the Sp- and the Rp-diastereomer reduced the rate of processing by Escherichia coli RNase P RNA at least 1000-fold under conditions where the chemical step is rate-limiting. The Rp-modification had no effect and the Sp-modification had a moderate effect on precursor tRNA ground state binding to RNase P RNA. Processing of the Rp-diastereomeric substrate was largely restored in the presence of the "thiophilic" Cd2+ as the only divalent metal ion, demonstrating direct metal ion coordination to the (pro)-Rp substituent at the cleavage site and arguing against a specific role for Mg(2+)-ions at the pro-Sp oxygen. For the Rp-diastereomeric substrate, Hill plot analysis revealed a cooperative dependence upon [Cd2+] of nH = 1.8, consistent with a two-metal ion mechanism. In the presence of the Sp-modification, neither Mn2+ nor Cd2+ was able to restore detectable cleavage at the canonical site. Instead, the ribozyme promotes cleavage at the neighboring unmodified phosphodiester with low efficiency. Dramatic inhibition of the chemical step by both the Rp- and Sp-phosphorothioate modification is unprecedented among known ribozymes and points to unique features of transition state geometry in the RNase P RNA-catalyzed reaction.
Resumo:
Genetic instability is thought to be responsible for the numerous genotypic changes that occur during neoplastic transformation and metastatic progression. To explore the role of genetic instability at the level of point mutations during mammary tumor development and malignant progression, we combined transgenic mouse models of mutagenesis detection and oncogenesis. Bitransgenic mice were generated that carried both a bacteriophage lambda transgene to assay mutagenesis and a polyomavirus middle T oncogene, mammary gland-targeted expression of which led to metastatic mammary adenocarcinomas. We developed a novel assay for the detection of mutations in the lambda transgene that selects for phage containing forward mutations only in the lambda cII gene, using an hfl- bacterial host. In addition to the relative ease of direct selection, the sensitivity of this assay for both spontaneous and chemically induced mutations was comparable to the widely used mutational target gene, lambda lacI, making the cII assay an attractive alternative for mutant phage recovery for any lambda-based mouse mutagenesis assay system. The frequencies of lambda cII- mutants were not significantly different in normal mammary epithelium, primary mammary adenocarcinomas, and pulmonary metastases. The cII mutational spectra in these tissues consisted mostly of G/C-->A/T transitions, a large fraction of which occurred at CpG dinucleotides. These data suggest that, in this middle T oncogene model of mammary tumor progression, a significant increase in mutagenesis is not required for tumor development or for metastatic progression.
Resumo:
Resistance to virus infections in higher vertebrates is mediated in part through catalysis of RNA decay by the, interferon-regulated 2-5A system. A functional 2-5A system requires two enzymes, a 2-5A synthetase that produces 5'-phosphorylated, 2',5'-linked oligoadenylates (2-5A) in response to double-stranded RNA, and the 2-5A-dependent RNase L. We have coexpressed these human enzymes in transgenic tobacco plants by using a single plasmid containing the cDNAs for both human RNase L and a low molecular weight form of human 2-5A synthetase under control of different, constitutive promoters. Expression of the human cDNAs in the transgenic plants was demonstrated from Northern blots, by specific enzyme assays, and by immunodetection (for RNase L). Infection of leaves, detached or in planta, of the coexpressing transgenic plants by tobacco mosaic virus, alfalfa [correction of alfafa] mosaic virus, or tobacco etch virus resulted in necrotic lesions. In contrast, leaves expressing 2-5A synthetase or RNase L alone and leaves containing the plasmid vector alone produced typical systemic infections. While alfalfa mosaic virus produced lesions only in the inoculated leaves regardless of the concentration of virus in the inoculum, high, but not low, levels of tobacco etch virus inoculum resulted in escape of virus to uninoculated leaves. Nevertheless, there was a substantial reduction of tobacco etch virus yield as measured by ELISA assay in the coexpressing transgenic plants. These results indicate that expression of a mammalian 2-5A system in plants provides resistance to virus infections.
Resumo:
We have studied RNase P RNA (M1 RNA) cleavage of model tRNA precursors that are cleaved at two independent positions. Here we present data demonstrating that cleavage at both sites depends on the 2'-OH immediately 5' of the respective cleavage site. However, we show that the 2-amino group of a guanosine at the cleavage site plays a significant role in cleavage at one of these sites but not at the other. These data suggest that these two cleavage sites are handled differently by the ribozyme. This theory is supported by our finding that the cross-linking pattern between Ml RNA and tRNA precursors carrying 4-thioU showed distinct differences, depending on the location of the 4-thioU relative to the respective cleavage site. These findings lead us to suggest that different cleavage sites are aligned differently in the active site, possibly as a result of different binding modes of a substrate to M1 RNA. We discuss a model in which the interaction between the 3'-terminal "RCCA" motif (first three residues interact) of a tRNA precursor and M1 RNA plays a significant role in this process.
Resumo:
The Escherichia coli endoribonuclease RNase E is essential for RNA processing and degradation. Earlier work provided evidence that RNase E exists intracellularly as part of a multicomponent complex and that one of the components of this complex is a 3'-to-5' exoribonuclease, polynucleotide phosphorylase (EC 2.7.7.8). To isolate and identify other components of the RNase E complex, FLAG-epitope-tagged RNase E (FLAG-Rne) fusion protein was purified on a monoclonal antibody-conjugated agarose column. The FLAG-Rne fusion protein, eluted by competition with the synthetic FLAG peptide, was found to be associated with other proteins. N-terminal sequencing of these proteins revealed the presence in the RNase E complex not only of polynucleotide phosphorylase but also of DnaK, RNA helicase, and enolase (EC 4.2.1.11). Another protein associated only with epitope-tagged temperature-sensitive (Rne-3071) mutant RNase E but not with the wild-type enzyme is GroEL. The FLAG-Rne complex has RNase E activity in vivo and in vitro. The relative amount of proteins associated with wild-type and Rne-3071 expressed at an elevated temperature differed.
Resumo:
A simple and highly sensitive catalysis assay is demonstrated based on analyzing reactions with acridonetagged compounds by thin-layer chromatography. As little as 1 pmol of product is readily visualized by its blue fluorescence under UV illumination and identified by its retention factor (Rf). Each assay requires only 10 microliters of solution. The method is reliable, inexpensive, versatile, and immediately applicable in repetitive format for screening catalytic antibody libraries. Three examples are presented: (i) the epoxidation of acridone labeled (S)-citronellol. The pair of stereoisomeric epoxides formed is resolved on the plate, which provides a direct selection method for enantioselective epoxidation catalysts. (ii) Oxidation of acridone-labeled 1-hexanol to 1-hexanal. The activity of horse liver alcohol dehydrogenase is detected. (iii) Indirect product labeling of released aldehyde groups by hydrazone formation with an acridone-labeled hydrazide. Activity of catalytic antibodies for hydrolysis of enol ethers is detected.
Resumo:
An expression-cloning strategy was used to isolate a cDNA that encodes a protein that confers calcitonin gene-related peptide (CGRP) responsiveness to Xenopus laevis oocytes. A guinea pig organ of Corti (the mammalian hearing organ) cDNA library was screened by using an assay based on the cystic fibrosis transmembrane conductance regulator (CFTR). The CFTR is a chloride channel that is activated upon phosphorylation; this channel activity was used as a sensor for CGRP-induced activation of intracellular kinases. A cDNA library from guinea pig organ of Corti was screened by using this oocyte-CFTR assay. A cDNA was identified that contained an open reading frame coding for a small hydrophilic protein that is presumed to be either a CGRP receptor or a component of a CGRP receptor complex. This CGRP receptor component protein confers CGRP-specific activation to the CFTR assay, as no activation was detected upon application of calcitonin, amylin, neuropeptide Y, vasoactive intestinal peptide, or beta-endorphin. In situ hybridization demonstrated that the CGRP receptor component protein is expressed in outer hair cells of the organ of Corti and is colocalized with CGRP-containing efferent nerve terminals.
Resumo:
When NMR hydrogen exchange was used previously to monitor the kinetics of RNase A unfolding, some peptide NH protons were found to show EX2 exchange (detected by base catalysis) in addition to the expected EX1 exchange, whose rate is limited by the kinetic unfolding process. In earlier work, two groups showed independently that a restricted two-process model successfully fits published hydrogen exchange rates of native RNase A in the range 0-0.7 M guanidinium chloride. We find that this model predicts properties that are very different from the observed properties of the EX2 exchange reactions of RNase A in conditions where guanidine-induced unfolding takes place. The model predicts that EX2 exchange should be too fast to measure by the technique used, whereas it is readily measurable. Possible explanations for the contradiction are considered here, and we show that removing the restriction from the earlier two-process model is sufficient to resolve the contradiction; instead of specifying that exchange caused by global unfolding occurs by the EX2 mechanism, we allow it to occur by the general mechanism, which includes both the EX1 and EX2 cases. It is logical to remove this restriction because global unfolding of RNase A is known to give rise to EX1 exchange in these unfolding conditions. Resolving the contradiction makes it possible to determine whether populated unfolding intermediates contribute to the EX2 exchange, and this question is considered elsewhere. The results and simulations indicate that moderate or high denaturant concentrations readily give rise to EX1 exchange in native proteins. Earlier studies showed that hydrogen exchange in native proteins typically occurs by the EX2 mechanism but that high temperatures or pH values above 7 may give rise to EX1 exchange. High denaturant concentrations should be added to the list of variables likely to cause EX1 exchange.
Resumo:
A general method has been developed to analyze all 2' hydroxyl groups involved in tertiary interactions in RNA in a single experiment. This method involves comparing the activity of populations of circularly permuted RNAs that contain or lack potential hydrogen-bond donors at each position. The 2' hydroxyls of the pre-tRNA substrate identified as potential hydrogen bond donors in intermolecular interactions with the ribozyme from eubacterial RNase P (P RNA) are located in the T stem and T loop, acceptor stem, and 3' CCA regions. To locate the hydrogen-bond acceptors for one of those 2' hydroxyls in the P RNA, a phylogenetically conserved adenosine was mutated to a guanosine. When this mutant P RNA was used, increased cleavage activity of a single circularly permuted substrate within the population was observed. The cleavage efficiency (kcat/Km) of a singly 2'-deoxy-substituted substrate at this position in the T stem was also determined. For the wild-type P RNA, the catalytic efficiency was significantly decreased compared with that of the all-ribo substrate, consistent with the notion that this 2' hydroxyl plays an important role. For the P RNA mutant, no additional effect was found upon 2'-deoxy substitution. We propose that this particular 2' hydroxyl in the pre-tRNA interacts specifically with this adenosine in the P RNA. This method should be useful in examining the role of 2' hydroxyl groups in other RNA-RNA and RNA-protein complexes.
Resumo:
Plasmids encoding various external guide sequences (EGSs) were constructed and inserted into Escherichia coli. In strains harboring the appropriate plasmids, the expression of fully induced beta-galactosidase and alkaline phosphatase activity was reduced by more than 50%, while no reduction in such activity was observed in strains with non-specific EGSs. The inhibition of gene expression was virtually abolished at restrictive temperatures in strains that were temperature-sensitive for RNase P (EC 3.1.26.5). Northern blot analysis showed that the steady-state copy number of EGS RNAs was several hundred per cell in vivo. A plasmid that contained a gene for M1 RNA covalently linked to a specific EGS reduced the level of expression of a suppressor tRNA that was encoded by a separate plasmid. Similar methods can be used to regulate gene expression in E. coli and to mimic the properties of cold-sensitive mutants.
Resumo:
A causal role has been inferred for ERBB2 overexpression in the etiology of breast cancer and other epithelial malignancies. The development of therapeutics that inhibit this tyrosine kinase cell surface receptor remains a high priority. This report describes the specific downregulation of ERBB2 protein and mRNA in the breast cancer cell line SK-BR-3 by using antisense DNA phosphorothioates. An approach was developed to examine antisense effects which allows simultaneous measurements of antisense dose and gene specific regulation on a per cell basis. A fluorescein isothiocyanate end-labeled tracer oligonucleotide was codelivered with antisense DNA followed by immunofluorescent staining for ERBB2 protein expression. Two-color flow cytometry measured the amount of both intracellular oligonucleotide and ERBB2 protein. In addition, populations of cells that received various doses of nucleic acids were physically separated and studied. In any given transfection, a 100-fold variation in oligonucleotide dosage was found. ERBB2 protein expression was reduced greater than 50%, but only in cells within a relatively narrow uptake range. Steady-state ERBB2 mRNA levels were selectively diminished, indicating a specific antisense effect. Cells receiving the optimal antisense dose were sorted and analyzed for cell cycle changes. After 2 days of ERBB2 suppression, breast cancer cells showed an accumulation in the G1 phase of the cell cycle.
Resumo:
The hepatitis C virus RNA genome encodes a long polyprotein that is proteolytically processed into at least 10 products. The order of these cleavage products in the polyprotein is NH2-C-E1-E2-p7-NS2-NS3-NS4A-NS4B-NS5A-NS5B -COOH. A serine proteinase domain located in the N-terminal one-third of nonstructural protein NS3 mediates cleavage at four downstream sites (the 3/4A, 4A/4B, 4B/5A, and 5A/5B sites). In addition to the proteinase catalytic domain, the NS4A protein is required for processing at the 4B/5A site but not at the 5A/5B site. These cleavage events are likely to be essential for virus replication, making the serine proteinase an attractive antiviral target. Here we describe an in vitro assay where the NS3-4A polyprotein, NS3, the serine proteinase domain (the N-terminal 181 residues of NS3), and the NS4A cofactor were produced by cell-free translation and tested for trans-processing of radiolabeled substrates. Polyprotein substrates, NS4A-4B or truncated NS5A-5B, were cleaved in trans by all forms of the proteinase, whereas NS4A was also required for NS4B-5A processing. Proteolysis was abolished by substitution mutations previously shown to inactivate the proteinase or block cleavage at specific sites in vivo. Furthermore, N-terminal sequence analysis established that cleavage in vitro occurred at the authentic 4A/4B site. Translation in the presence of microsomal membranes enhanced processing for some, but not all, proteinase-substrate combinations. Trans-processing was both time and temperature dependent and was eliminated by treatment with a variety of detergents above their critical micelle concentrations. Among many common proteinase inhibitors tested, only high (millimolar) concentrations of serine proteinase inhibitors tosyllysyl chloromethyl ketone and 4-(2-aminoethyl)benzenesulfonyl fluoride inactivated the NS3 proteinase. This in vitro assay should facilitate purification and further characterization of the viral serine proteinase and identification of molecules which selectively inhibit its activity.
Resumo:
In Escherichia coli and Salmonella typhimurium it has been shown that selenophosphate serves as the selenium donor for the conversion of seryl-tRNA to selenocysteyl-tRNA and for the synthesis of 2-selenouridine, a modified nucleoside present in tRNAs. Although selenocysteyl-tRNA also is formed in eukaryotes and is used for the specific insertion of selenocysteine into proteins, the precise mechanism of its biosynthesis from seryl-tRNA in these systems is not known. Because selenophosphate is extremely oxygen labile and difficult to identify in biological systems, we used an immunological approach to detect the possible presence of selenophosphate synthetase in mammalian tissues. With antibodies elicited to E. coli selenophosphate synthetase the enzyme was detected in extracts of rat brain, liver, kidney, and lung by immunoblotting. Especially high levels were detected in Methanococcus vannielii, a member of the domain Archaea, and the enzyme was partially purified from this source. It seems likely that the use of selenophosphate as a selenium donor is widespread in biological systems.