889 resultados para RETINAL DYSTROPHIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinitis pigmentosa (RP) is a degenerative disease leading to photoreceptor cell loss. Mouse models of RP, such as the rd10 mouse (B6.CXBl-Pde6brd10/J), have enhanced our understanding of the disease, allowing for development of potential therapeutics. In 2011, our group first demonstrated that the synthetic progesterone analogue ‘Norgestrel’ is neuroprotective in two mouse models of retinal degeneration, including the rd10 mouse. We have since elucidated several mechanisms by which Norgestrel protects stressed photoreceptors, such as upregulating growth factors. This study consequently aimed to further characterize Norgestrel’s neuroprotective effects. Specifically, we sought to investigate the role that microglia might play; for microglial-derived inflammation has been shown to potentiate neurodegeneration. Dams of post-natal day (P) 10 rd10 pups were given a Norgestrel-supplemented diet (80mg/kg). Upon weaning, pups remained on Norgestrel. Tissue was harvested from P15-P50 rd10 mice on control or Norgestrel-supplemented diet. Norgestrel-diet administration provided significant retinal protection out to P40 in rd10 mice. Alterations in microglial activity coincided with significant protection, implicating microglial changes in Norgestrel-induced neuroprotection. Utilizing primary cultures of retinal microglia and 661W photoreceptor-like cells, we show that rd10 microglia drive neuronal cell death. We reveal a novel role of Norgestrel, acting directly on microglia to reduce pro-inflammatory activation and prevent neuronal cell death. Norgestrel effectively suppresses cytokine, chemokine and danger-associated molecular pattern molecule (DAMP) expression in the rd10 retina. Remarkably, Norgestrel upregulates fractalkine-CX3CR1 signaling 1 000-fold at the RNA level, in the rd10 mouse. Fractalkine-CX3CR1 signaling has been shown to protect neurons by regulating retinal microglial activation and migration. Ultimately, these results present Norgestrel as a promising treatment for RP, with dual actions as a neuroprotective and anti-inflammatory agent in the retina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglia are the resident immune cells of the central nervous system (CNS) and play an important role in innate immune defense as well as tissue homeostasis. Chronic microglial reactivity, microgliosis, is a general hallmark of inflammatory and degenerative diseases that affect the CNS, including the retina. There is increasing evidence that chronic microgliosis is more than just a bystander effect, but rather actively contributes to progression of degeneration through processes such as toxic nitric oxide (NO) production and even phagocytosis of stressed but viable photoreceptors. Therefore immunmodulation of microglia presents a possible therapeutic strategy for retinal degenerations. Notably, the expression of the mitochondrial translocator protein 18 (κDa) (TSPO) is highly elevated in reactive microglia as seen in several neuroinflammatory diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Therefore it is used as a gliosis biomarker in the brain. Moreover TSPO ligands show potent effects in resolving neuroinflammatory brain disorders. However, TSPO expression in the eye had not been investigated before. Further, it was unknown whether TSPO ligands’ potent immunomodulatory effects could be used to treat retinal degenerations. To fill this gap, the study aimed to analyze whether TSPO is also a potential biomarker for degenerative processes in the retina. Moreover the thesis attempted to determine whether a specific TSPO ligand, XBD173, might modulate microglial reactivity and is a potent therapeutic, to treat retinal degenerative diseases. The findings revealed that TSPO is strongly upregulated in microglial cells of retinoschisin-deficient (RS1-/y) mice, a model of inherited retinal degeneration and in a murine light damage model. A co-localization of TSPO and microglia was furthermore detectable in human retinal sections, indicating a potential role for TSPO as a biomarker for retinal degenerations. In vitro assays showed that the TSPO ligand XBD173 effectively inhibited features of microglial activation such as morphological transformation into reactive phagocytes and enhanced expression of pro-inflammatory cytokines. XBD173 also reduced microglial migration and proliferation and reduced their neurotoxic potential on photoreceptor cells. In two independent mouse models of light-induced retinal degeneration, the treatment with XBD173 reduced accumulation of amoeboid, reactive microglia in the outer retina and attenuated degenerative processes, indicated by a nearly preserved photoreceptor layer. A further question addressed in this thesis was whether minocycline, an antibiotic with additional anti-inflammatory properties is able to reduce microglial neurotoxicity and to protect the retina from degeneration. Minocycline administration dampened microglial pro-inflammatory gene expression, NO production and neurotoxicity on photoreceptors. Interestingly, in addition to its immunomodulatory effect, minocycline also increased the viability of photoreceptors in a direct manner. In the light damage model, minocycline administration counter-acted microglial activation and blocked retinal degeneration. Taken together these results identified TSPO as a biomarker for microglial reactivity and as therapeutic target in the retina. Targeting TSPO with XBD173 was able to reverse microglial reactivity and could prevent degenerative processes in the retina. In addition, the study showed that the antibiotic minocycline effectively counter-regulates microgliosis and light-induced retinal degeneration. Considering that microgliosis is a major contributing factor for retinal degenerative disorders, this thesis supports the concept of a microglia-directed therapy to treat retinal degeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polarized trafficking of adhesion receptors plays a pivotal role in controlling cellular behavior during morphogenesis. Particularly, clathrin-dependent endocytosis of integrins has long been acknowledged as essential for cell migration. However, little is known about the contribution of integrin trafficking to epithelial tissue morphogenesis. Here we show how the transmembrane protein Opo, previously described for its essential role during optic cup folding, plays a fundamental role in this process. Through interaction with the PTB domain of the clathrin adaptors Numb and Numbl via an integrin-like NPxF motif, Opo antagonizes Numb/Numbl function and acts as a negative regulator of integrin endocytosis in vivo. Accordingly, numb/numbl gain-of-function experiments in teleost embryos mimic the retinal malformations observed in opo mutants. We propose that developmental regulator Opo enables polarized integrin localization by modulating Numb/Numbl, thus directing the basal constriction that shapes the vertebrate retina epithelium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To introduce techniques for deriving a map that relates visual field locations to optic nerve head (ONH) sectors and to use the techniques to derive a map relating Medmont perimetric data to data from the Heidelberg Retinal Tomograph. METHODS: Spearman correlation coefficients were calculated relating each visual field location (Medmont M700) to rim area and volume measures for 10 degrees ONH sectors (HRT III software) for 57 participants: 34 with glaucoma, 18 with suspected glaucoma, and 5 with ocular hypertension. Correlations were constrained to be anatomically plausible with a computational model of the axon growth of retinal ganglion cells (Algorithm GROW). GROW generated a map relating field locations to sectors of the ONH. The sector with the maximum statistically significant (P < 0.05) correlation coefficient within 40 degrees of the angle predicted by GROW for each location was computed. Before correlation, both functional and structural data were normalized by either normative data or the fellow eye in each participant. RESULTS: The model of axon growth produced a 24-2 map that is qualitatively similar to existing maps derived from empiric data. When GROW was used in conjunction with normative data, 31% of field locations exhibited a statistically significant relationship. This significance increased to 67% (z-test, z = 4.84; P < 0.001) when both field and rim area data were normalized with the fellow eye. CONCLUSIONS: A computational model of axon growth and normalizing data by the fellow eye can assist in constructing an anatomically plausible map connecting visual field data and sectoral ONH data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Retinal image properties such as contrast and spatial frequency play important roles in the development of normal vision. For example, visual environments comprised solely of low contrast and/or low spatial frequencies induce myopia. The visual image is processed by the retina and it then locally controls eye growth. In terms of the retinal neurotransmitters that link visual stimuli to eye growth, there is strong evidence to suggest involvement of the retinal dopamine (DA) system. For example, effectively increasing retinal DA levels by using DA agonists can suppress the development of form-deprivation myopia (FDM). However, whether visual feedback controls eye growth by modulating retinal DA release, and/or some other factors, is still being elucidated. This thesis is chiefly concerned with the relationship between the dopaminergic system and retinal image properties in eye growth control. More specifically, whether the amount of retinal DA release reduces as the complexity of the image degrades was determined. For example, we investigated whether the level of retinal DA release decreased as image contrast decreased. In addition, the effects of spatial frequency, spatial energy distribution slope, and spatial phase on retinal DA release and eye growth were examined. When chicks were 8-days-old, a cone-lens imaging system was applied monocularly (+30 D, 3.3 cm cone). A short-term treatment period (6 hr) and a longer-term treatment period (4.5 days) were used. The short-term treatment tests for the acute reduction in DA release by the visual stimulus, as is seen with diffusers and lenses, whereas the 4.5 day point tests for reduction in DA release after more prolonged exposure to the visual stimulus. In the contrast study, 1.35 cyc/deg square wave grating targets of 95%, 67%, 45%, 12% or 4.2% contrast were used. Blank (0% contrast) targets were included for comparison. In the spatial frequency study, both sine and square wave grating targets with either 0.017 cyc/deg and 0.13 cyc/deg fundamental spatial frequencies and 95% contrast were used. In the spectral slope study, 30% root-mean-squared (RMS) contrast fractal noise targets with spectral fall-off of 1/f0.5, 1/f and 1/f2 were used. In the spatial alignment study, a structured Maltese cross (MX) target, a structured circular patterned (C) target and the scrambled versions of these two targets (SMX and SC) were used. Each treatment group comprised 6 chicks for ocular biometry (refraction and ocular dimension measurement) and 4 for analysis of retinal DA release. Vitreal dihydroxyphenylacetic acid (DOPAC) was analysed through ion-paired reversed phase high performance liquid chromatography with electrochemical detection (HPLC-ED), as a measure of retinal DA release. For the comparison between retinal DA release and eye growth, large reductions in retinal DA release possibly due to the decreased light level inside the cone-lens imaging system were observed across all treated eyes while only those exposed to low contrast, low spatial frequency sine wave grating, 1/f2, C and SC targets had myopic shifts in refraction. Amongst these treatment groups, no acute effect was observed and longer-term effects were only found in the low contrast and 1/f2 groups. These findings suggest that retinal DA release does not causally link visual stimuli properties to eye growth, and these target induced changes in refractive development are not dependent on the level of retinal DA release. Retinal dopaminergic cells might be affected indirectly via other retinal cells that immediately respond to changes in the image contrast of the retinal image.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Age-related maculopathy (ARM) has remained a challenging topic with respect to its aetiology, pathomechanisms, early detection and treatment since the late 19th century when it was first described as its own entity. ARM was previously considered an inflammatory disease, a degenerative disease, a tumor and as the result of choroidal hemodynamic disturbances and ischaemia. The latter processes have been repeatedly suggested to have a key role in its development and progression. In vivo experiments under hypoxic conditions could be models for the ischaemic deficits in ARM. Recent research has also linked ARM with gene polymorphisms. It is however unclear what triggers a person's gene susceptibility. In this manuscript, a linking hypothesis between aetiological factors including ischaemia and genetics and the development of early clinicopathological changes in ARM is proposed. New clinical psychophysical and electrophysiological tests are introduced that can detect ARM at an early stage. Models of early ARM based upon hemodynamic, photoreceptor and post-receptoral deficits are described and the mechanisms by which ischaemia may be involved as a final common pathway are considered. In neovascular age-related macular degeneration (neovascular AMD), ischaemia is thought to promote release of vascular endothelial growth factor (VEGF) which induces chorioretinal neovascularisation. VEGF is critical in the maintenance of the healthy choriocapillaris. In the final section of the manuscript the documentation of the effect of new anti-VEGF treatments on retinal function in neovascular AMD is critically viewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

While spatial determinants of emmetropization have been examined extensively in animal models and spatial processing of human myopes has also been studied, there have been few studies investigating temporal aspects of emmetropization and temporal processing in human myopia. The influence of temporal light modulation on eye growth and refractive compensation has been observed in animal models and there is evidence of temporal visual processing deficits in individuals with high myopia or other pathologies. Given this, the aims of this work were to examine the relationships between myopia (i.e. degree of myopia and progression status) and temporal visual performance and to consider any temporal processing deficits in terms of the parallel retinocortical pathways. Three psychophysical studies investigating temporal processing performance were conducted in young adult myopes and non-myopes: (1) backward visual masking, (2) dot motion perception and (3) phantom contour. For each experiment there were approximately 30 young emmetropes, 30 low myopes (myopia less than 5 D) and 30 high myopes (5 to 12 D). In the backward visual masking experiment, myopes were also classified according to their progression status (30 stable myopes and 30 progressing myopes). The first study was based on the observation that the visibility of a target is reduced by a second target, termed the mask, presented quickly after the first target. Myopes were more affected by the mask when the task was biased towards the magnocellular pathway; myopes had a 25% mean reduction in performance compared with emmetropes. However, there was no difference in the effect of the mask when the task was biased towards the parvocellular system. For all test conditions, there was no significant correlation between backward visual masking task performance and either the degree of myopia or myopia progression status. The dot motion perception study measured detection thresholds for the minimum displacement of moving dots, the maximum displacement of moving dots and degree of motion coherence required to correctly determine the direction of motion. The visual processing of these tasks is dominated by the magnocellular pathway. Compared with emmetropes, high myopes had reduced ability to detect the minimum displacement of moving dots for stimuli presented at the fovea (20% higher mean threshold) and possibly at the inferior nasal retina. The minimum displacement threshold was significantly and positively correlated to myopia magnitude and axial length, and significantly and negatively correlated with retinal thickness for the inferior nasal retina. The performance of emmetropes and myopes for all the other dot motion perception tasks were similar. In the phantom contour study, the highest temporal frequency of the flickering phantom pattern at which the contour was visible was determined. Myopes had significantly lower flicker detection limits (21.8 ± 7.1 Hz) than emmetropes (25.6 ± 8.8 Hz) for tasks biased towards the magnocellular pathway for both high (99%) and low (5%) contrast stimuli. There was no difference in flicker limits for a phantom contour task biased towards the parvocellular pathway. For all phantom contour tasks, there was no significant correlation between flicker detection thresholds and magnitude of myopia. Of the psychophysical temporal tasks studied here those primarily involving processing by the magnocellular pathway revealed differences in performance of the refractive error groups. While there are a number of interpretations for this data, this suggests that there may be a temporal processing deficit in some myopes that is selective for the magnocellular system. The minimum displacement dot motion perception task appears the most sensitive test, of those studied, for investigating changes in visual temporal processing in myopia. Data from the visual masking and phantom contour tasks suggest that the alterations to temporal processing occur at an early stage of myopia development. In addition, the link between increased minimum displacement threshold and decreasing retinal thickness suggests that there is a retinal component to the observed modifications in temporal processing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On-axis monochromatic higher-order aberrations increase with age. Few studies have been made of peripheral refraction along the horizontal meridian of older eyes, and none of their off-axis higher-order aberrations. We measured wave aberrations over the central 42°x32° visual field for a 5mm pupil in 10 young and 7 older emmetropes. Patterns of peripheral refraction were similar in the two groups. Coma increased linearly with field angle at a significantly higher rate in older than in young emmetropes (−0.018±0.007 versus −0.006±0.002 µm/deg). Spherical aberration was almost constant over the measured field in both age groups and mean values across the field were significantly higher in older than in young emmetropes (+0.08±0.05 versus +0.02±0.04 µm). Total root-mean-square and higher-order aberrations increased more rapidly with field angle in the older emmetropes. However, the limits to monochromatic peripheral retinal image quality are largely determined by the second-order aberrations, which do not change markedly with age, and under normal conditions the relative importance of the increased higher-order aberrations in older eyes is lessened by the reduction in pupil diameter with age. Therefore it is unlikely that peripheral visual performance deficits observed in normal older individuals are primarily attributable to the increased impact of higher-order aberration.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tilted disc syndrome can cause visual field defects due to an optic disc anomaly. Recent electrophysiological findings demonstrate reduced central outer retinal function with ophthalmoscopically normal maculae. We measured macular sensitivity with the microperimeter and performed psychophysical assessment of mesopic rod and cone luminance temporal sensitivity (critical fusion frequency)in a 52-year-old male patient with tilted disc syndrome and ophthalmoscopically normal maculae. We found a marked reduction of sensitivity in the central 20 degrees and reduced rod- and cone-mediated mesopic visual function. Our findings extend previous electrophysiological data that suggest an outer retinal involvement of cone pathways and present a case with rod and cone impairment mediated via the magnocellular pathway in uncomplicated tilted disc syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To investigate the short term influence of imposed monocular defocus upon human optical axial length (the distance from anterior cornea to retinal pigment epithelium) and ocular biometrics. Methods: Twenty-eight young adult subjects (14 myopes and 14 emmetropes) had eye biometrics measured before and then 30 and 60 minutes after exposure to monocular (right eye) defocus. Four different monocular defocus conditions were tested, each on a separate day: control (no defocus), myopic (+3 D defocus), hyperopic (-3 D defocus) and diffuse (0.2 density Bangerter filter) defocus. The fellow eye was optimally corrected (no defocus). Results: Imposed defocus caused small but significant changes in optical axial length (p<0.0001). A significant increase in optical axial length (mean change +8 ± 14 μm, p=0.03) occurred following hyperopic defocus, and a significant reduction in optical axial length (mean change -13 ± 14 μm, p=0.0001) was found following myopic defocus. A small increase in optical axial length was observed following diffuse defocus (mean change +6 ± 13 μm, p=0.053). Choroidal thickness also exhibited some significant changes with certain defocus conditions. No significant difference was found between myopes and emmetropes in the changes in optical axial length or choroidal thickness with defocus. Conclusions: Significant changes in optical axial length occur in human subjects following 60 minutes of monocular defocus. The bi-directional optical axial length changes observed in response to defocus implies the human visual system is capable of detecting the presence and sign of defocus and altering optical axial length to move the retina towards the image plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Flickering stimuli increase the metabolic demand of the retina,making it a sensitive perimetric stimulus to the early onset of retinal disease. We determine whether flickering stimuli are a sensitive indicator of vision deficits resulting from to acute, mild systemic hypoxia when compared to standard static perimetry. Methods: Static and flicker visual perimetry were performed in 14 healthy young participants while breathing 12% oxygen (hypoxia) under photopic illumination. The hypoxia visual field data were compared with the field data measured during normoxia. Absolute sensitivities (in dB) were analysed in seven concentric rings at 1°, 3°, 6°, 10°, 15°, 22° and 30° eccentricities as well as mean defect (MD) and pattern defect (PD) were calculated. Preliminary data are reported for mesopic light levels. Results: Under photopic illumination, flicker and static visual field sensitivities at all eccentricities were not significantly different between hypoxia and normoxia conditions. The mean defect and pattern defect were not significantly different for either test between the two oxygenation conditions. Conclusion: Although flicker stimulation increases cellular metabolism, flicker photopic visual field impairment is not detected during mild hypoxia. These findings contrast with electrophysiological flicker tests in young participants that show impairment at photopic illumination during the same levels of mild hypoxia. Potential mechanisms contributing to the difference between the visual fields and electrophysiological flicker tests including variability in perimetric data, neuronal adaptation and vascular autoregulation, are considered. The data have implications for the use of visual perimetry in the detection of ischaemic/hypoxic retinal disorders under photopic and mesopic light levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To determine if participants with normal visual acuity, no ophthalmoscopically signs of age-related maculopathy (ARM) in both eyes and who are carriers of the CFH, LOC387715 and HRTA1 high-risk genotypes (“gene-positive”) have impaired rod- and cone-mediated mesopic visual function compared to persons who do not carry the risk genotypes (“gene-negative”).---------- METHODS: Fifty-three Caucasian study participants (mean 55.8 ± 6.1) were genotyped for CFH, LOC387715/ARMS2 and HRTA1 polymorphisms. We genotyped single nucleotide polymorphisms (SNPs) in the CFH (rs380390), LOC387715/ARMS2 (rs10490924) and HTRA1 (rs11200638) genes using Applied Biosystems optimised TaqMan assays. We determined the critical fusion frequency (CFF) mediated by cones alone (Long, Middle and Short wavelength sensitive cones; LMS) and by the combined activities of cones and rods (LMSR). The stimuli were generated using a 4-primary photostimulator that provides independent control of the photoreceptor excitation under mesopic light levels. Visual function was further assessed using standard clinical tests, flicker perimetry and microperimetry.---------- RESULTS: The mesopic CFF mediated by rods and cones (LMSR) was significantly reduced in gene-positive compared to gene-negative participants after correction for age (p=0.03). Cone-mediated CFF (LMS) was not significantly different between gene-positive and -negative participants. There were no significant associations between flicker perimetry and microperimetry and genotype.---------- CONCLUSIONS: This is the first study to relate ARM risk genotypes with mesopic visual function in clinically normal persons. These preliminary results could become of clinical importance as mesopic vision may be used to document sub-clinical retinal changes in persons with risk genotypes and to determine whether those persons progress into manifest disease.