920 resultados para RESTRICTED INTRAMOLECULAR ROTATION
Resumo:
The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP˙(H2O)n water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)2, two isomers of its trimer (2PY)3 and its tetramer (2PY)4, which lie in the 7–12 ns range.
Resumo:
Aims. Approach observations with the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) experiment onboard Rosetta are used to determine the rotation period, the direction of the spin axis, and the state of rotation of comet 67P’s nucleus. Methods. Photometric time series of 67P have been acquired by OSIRIS since the post wake-up commissioning of the payload in March 2014. Fourier analysis and convex shape inversion methods have been applied to the Rosetta data as well to the available ground-based observations. Results. Evidence is found that the rotation rate of 67P has significantly changed near the time of its 2009 perihelion passage, probably due to sublimation-induced torque. We find that the sidereal rotation periods P1 = 12.76129 ± 0.00005 h and P2 = 12.4043 ± 0.0007 h for the apparitions before and after the 2009 perihelion, respectively, provide the best fit to the observations. No signs of multiple periodicity are found in the light curves down to the noise level, which implies that the comet is presently in a simple rotation state around its axis of largest moment of inertia. We derive a prograde rotation model with spin vector J2000 ecliptic coordinates λ = 65° ± 15°, β = + 59° ± 15°, corresponding to equatorial coordinates RA = 22°, Dec = + 76°. However, we find that the mirror solution, also prograde, at λ = 275° ± 15°, β = + 50° ± 15° (or RA = 274°, Dec = + 27°), is also possible at the same confidence level, due to the intrinsic ambiguity of the photometric problem for observations performed close to the ecliptic plane.
Resumo:
We study projections onto non-degenerate one-dimensional families of lines and planes in R 3 . Using the classical potential theoretic approach of R. Kaufman, one can show that the Hausdorff dimension of at most 12 -dimensional sets [Math Processing Error] is typically preserved under one-dimensional families of projections onto lines. We improve the result by an ε , proving that if [Math Processing Error], then the packing dimension of the projections is almost surely at least [Math Processing Error]. For projections onto planes, we obtain a similar bound, with the threshold 12 replaced by 1 . In the special case of self-similar sets [Math Processing Error] without rotations, we obtain a full Marstrand-type projection theorem for 1-parameter families of projections onto lines. The [Math Processing Error] case of the result follows from recent work of M. Hochman, but the [Math Processing Error] part is new: with this assumption, we prove that the projections have positive length almost surely.
Resumo:
We present the results from a simultaneous estimation of the gravity field, Earth rotation parameters, and station coordinates from combined SLR solutions incorporating up to nine geodetic satellites: LAGEOS-1/2, Starlette, Stella, AJISAI, Beacon-C, Lares, Blits and LARES. These solutions cover all three pillars of satellite geodesy and ensure full consistency between the Earth rotation parameters, gravity field coefficients, and geometry-related parameters. We address benefits emerging from such an approach and discuss particular aspects and limitations of the gravity field recovery using SLR data. The current accuracy of SLR-derived polar motion, by the means of WRMS w.r.t. IERS-08-C04 series, is at a level of 118-149 μas, which corresponds to 4 to 5 mm on the Earth’s surface. The WRMS of SLR-derived Length-of-Day, when the gravity field parameters are simultaneously estimated, is 56 μs/day, corresponding to about 26 mm on the ground, and the mean bias of SLR-derived Length-of-Day is 6.3 μs/day, corresponding to 3 mm.
Resumo:
Background Acetabular anatomy on AP pelvic radiographsdepends on pelvic orientation during radiograph acquisition. However, not all parameters may change to a clinically relevant degree with differences in pelvic orientation. This issue may influence the diagnosis of acetabular pathologies and planning of corrective acetabular surgery (reorientation or rim trimming). However, to this point, it has not been well characterized. Questions/purposes We asked (1) which radiographic parameters change in a clinical setting when normalized to neutral pelvic orientation; (2) which parameters do not change in an experimental setting when the pelvis is experimentally rotated/tilted; and (3) which of these changes are ‘‘ultimately’’ relevant based on a prespecified definition of relevance. Methods In a clinical setup, 11 hip parameters were evaluated in 101 patients (126 hips) by two observers and the interobserver difference was calculated. All parameters were normalized to an anatomically defined neutral pelvic orientation with the help of a lateral pelvic radiograph and specific software. Differences between nonnormalized and normalized values were calculated (effect of normalization). In an experimental setup involving 20 cadaver pelves (40 hips), the maximum range for each parameter was computed with the pelvis rotated (range, −12° to 12°) and tilted (range, −24° to 24°). ‘‘Ultimately’’ relevant changes existed if the effect of normalization exceeded the interobserver difference (eg, 37% versus 6% for prevalence of a positive crossover sign) and/or the maximum experimental range exceeded 1 SD of interobserver difference (eg, 27% versus 6% for anterior acetabular coverage). Results In the clinical setup, all parameters except the ACM angle and craniocaudal acetabular coverage changed when being normalized, eg, effect of normalization for lateral center-edge angle, acetabular index, and sharp angle ranged from −5° to 4° (p values < 0.029). In the experimental setup, five parameters showed no major changes, whereas six parameters did change (all p values < 0.001). Ultimately relevant changes were found for anteroposterior acetabular coverage, retroversion index, and prevalence of a positive crossover or posterior wall sign. Conclusions Lateral center-edge angle, ACM angle, Sharp angle, acetabular and extrusion index, and craniocaudal acetabular coverage showed no relevant changes with varying pelvic orientation and can therefore be acquired independent from individual pelvic tilt and rotation in clinical practice. In contrast, anteroposterior acetabular coverage, crossover and posterior wall sign, and retroversion index call for specific efforts that address individual pelvic orientation such as computer-assisted evaluation of radiographs. Level of Evidence Level III, diagnostic study. See the Guidelines for Authors for a complete description of levels of evidence.
Resumo:
10.1002/hlca.19950780816.abs A conformational analysis of the (3′S,5′R)-2′-deoxy-3′,5′-ethano-α-D-ribonucleosides (a-D-bicyclodeoxynucleosides) based on the X-ray analysis of N4-benzoyl-α-D-(bicyclodeoxycytidine) 6 and on 1H-NMR analysis of the α-D-bicyclodeoxynucleoside derivatives 1-7 reveals a rigid sugar structure with the furanose units in the l′-exo/2′-endo conformation and the secondary OH groups on the carbocyclic ring in the pseudoequatorial orientation. Oligonucleotides consisting of α-D-bicyclothymidine and α-D-bicyclodeoxyadenosine were successfully synthesized from the corresponding nucleosides by phosphoramidite methodology on a DNA synthesizer. An evaluation of their pairing properties with complementary natural RNA and DNA by means of UV/melting curves and CD spectroscopy show the following characteristics: i) α-bcd(A10) and α-bcd(T10) (α = short form of α-D)efficiently form complexes with complementary natural DNA and RNA. The stability of these hybrids is comparable or slightly lower as those with natural β-d(A10) or β-d(T10)( β = short form ofβ-D). ii) The strand orientation in α-bicyclo-DNA/β-DNA duplexes is parallel as was deduced from UV/melting curves of decamers with nonsymmetric base sequences. iii) CD Spectroscopy shows significant structural differences between α-bicyclo-DNA/β-DNA duplexes compared to α-DNA/β-DNA duplexes. Furthermore, α-bicyclo-DNA is ca. 100-fold more resistant to the enzyme snake-venom phosphodiesterase with respect to β-DNA and about equally resistant as α-DNA.