985 resultados para RECENT SEDIMENTATION-RATES
Resumo:
The Labrador Sea is a particularly suitable high-latitude basin for investigating U and Th behavior in deep-sea sediments. During the late Quaternary, the cyclic development and decay of huge ice sheets on adjacent land masses resulted in large-amplitude changes in sedimentation rates and organic paleoproductivities. The resulting magnification of U and Th response is well illustrated by high-resolution studies on piston-cored sediments from the Greenland continental rise at Ocean Drilling Program Leg 105 Site 646 spanning isotopic stages 8 to 1. Our results show a clear positive correlation of 238U/232Th ratios with organic paleoproductivity indicators (e.g., dinocyst) due to U uptake in the water column and/or during the early early diagenesis of organic matter responding to carbon fluxes and to their climate forcing. 230Th excesses over 234U exceed the theoretical value of the 230Th rain from the overlying water column, indicating lateral input possibly from the Greenland slope and shelf. Because these horizontal fluxes of 230Th may be partly controlled by physical parameters, 230Th excesses cannot be unequivocally correlated with sedimentation rates and/or productivity as reported elsewhere. In this subarctic basin characterized by low overall organic carbon burial, the 238U/232Th ratio appears to be a sensible geochemical indicator of organic activity and paleoproductivity.
Resumo:
A 2 m.y. oxygen isotope record of Globigerinoides sacculifer from the Ontong Java Plateau, based on cores from Ocean Drilling Program Leg 130, is dated by matching variations to an orbital template. The procedure allows us to present the most complete Quaternary record available for the western equatorial Pacific. The template-generating algorithm describes a balance between growth and melting of ice. Following basic Milankovitch theory, ice growth is taken as constant, while melting is taken to depend on summer insolation, current ice mass, and average past ice mass. Template settings must be changed once, between 1 and 1.2 Ma, to reflect a major shift in climate. Template fits are strikingly good over much of the record and can be used to detect and fill gaps from core breaks and other disturbances. One result of template dating is an exact age for the Brunhes-Matuyama magnetic reversal boundary, at 790+/-5 ka, as well as several other precise dates (900 ka for the middle Pleistocene climate shift; 1070, 1240, and 1450 ka for isotope stages 31, 37, and 47, respectively). Sedimentation rates fluctuate between 18 and 28 m/m.y., a ca. 400 ka cycle being the most prominent. Major anomalies arise within the transitional regime (1.2 to 1 Ma). The origin of the cycles is unknown; we propose productivity variations in the western equatorial Pacific.