927 resultados para REAL-TIME MEASUREMENT
Resumo:
This paper introduces an architecture for identifying and modelling in real-time at a copper mine using new technologies as M2M and cloud computing with a server in the cloud and an Android client inside the mine. The proposed design brings up pervasive mining, a system with wider coverage, higher communication efficiency, better fault-tolerance, and anytime anywhere availability. This solution was designed for a plant inside the mine which cannot tolerate interruption and for which their identification in situ, in real time, is an essential part of the system to control aspects such as instability by adjusting their corresponding parameters without stopping the process.
Resumo:
Real-time estimates of output gaps and inflation gaps differ from the values that are obtained using data available long after the event. Part of the problem is that the data on which the real-time estimates are based is subsequently revised. We show that vector-autoregressive models of data vintages provide forecasts of post-revision values of future observations and of already-released observations capable of improving estimates of output and inflation gaps in real time. Our findings indicate that annual revisions to output and inflation data are in part predictable based on their past vintages.
Resumo:
We examine how the accuracy of real-time forecasts from models that include autoregressive terms can be improved by estimating the models on ‘lightly revised’ data instead of using data from the latest-available vintage. The benefits of estimating autoregressive models on lightly revised data are related to the nature of the data revision process and the underlying process for the true values. Empirically, we find improvements in root mean square forecasting error of 2–4% when forecasting output growth and inflation with univariate models, and of 8% with multivariate models. We show that multiple-vintage models, which explicitly model data revisions, require large estimation samples to deliver competitive forecasts. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
This paper proposes a new reconstruction method for diffuse optical tomography using reduced-order models of light transport in tissue. The models, which directly map optical tissue parameters to optical flux measurements at the detector locations, are derived based on data generated by numerical simulation of a reference model. The reconstruction algorithm based on the reduced-order models is a few orders of magnitude faster than the one based on a finite element approximation on a fine mesh incorporating a priori anatomical information acquired by magnetic resonance imaging. We demonstrate the accuracy and speed of the approach using a phantom experiment and through numerical simulation of brain activation in a rat's head. The applicability of the approach for real-time monitoring of brain hemodynamics is demonstrated through a hypercapnic experiment. We show that our results agree with the expected physiological changes and with results of a similar experimental study. However, by using our approach, a three-dimensional tomographic reconstruction can be performed in ∼3 s per time point instead of the 1 to 2 h it takes when using the conventional finite element modeling approach
Resumo:
Energy storage is a potential alternative to conventional network reinforcementof the low voltage (LV) distribution network to ensure the grid’s infrastructure remainswithin its operating constraints. This paper presents a study on the control of such storagedevices, owned by distribution network operators. A deterministic model predictive control (MPC) controller and a stochastic receding horizon controller (SRHC) are presented, wherethe objective is to achieve the greatest peak reduction in demand, for a given storagedevice specification, taking into account the high level of uncertainty in the prediction of LV demand. The algorithms presented in this paper are compared to a standard set-pointcontroller and bench marked against a control algorithm with a perfect forecast. A specificcase study, using storage on the LV network, is presented, and the results of each algorithmare compared. A comprehensive analysis is then carried out simulating a large number of LV networks of varying numbers of households. The results show that the performance of each algorithm is dependent on the number of aggregated households. However, on a typical aggregation, the novel SRHC algorithm presented in this paper is shown to outperform each of the comparable storage control techniques.
Resumo:
Language processing plays a crucial role in language development, providing the ability to assign structural representations to input strings (e.g., Fodor, 1998). In this paper we aim at contributing to the study of children's processing routines, examining the operations underlying the auditory processing of relative clauses in children compared to adults. English-speaking children (6–8;11) and adults participated in the study, which employed a self-paced listening task with a final comprehension question. The aim was to determine (i) the role of number agreement in object relative clauses in which the subject and object NPs differ in terms of number properties, and (ii) the role of verb morphology (active vs. passive) in subject relative clauses. Even though children's off-line accuracy was not always comparable to that of adults, analyses of reaction times results support the view that children have the same structural processing reflexes observed in adults.
Resumo:
Factor forecasting models are shown to deliver real-time gains over autoregressive models for US real activity variables during the recent period, but are less successful for nominal variables. The gains are largely due to the Financial Crisis period, and are primarily at the shortest (one quarter ahead) horizon. Excluding the pre-Great Moderation years from the factor forecasting model estimation period (but not from the data used to extract factors) results in a marked fillip in factor model forecast accuracy, but does the same for the AR model forecasts. The relative performance of the factor models compared to the AR models is largely unaffected by whether the exercise is in real time or is pseudo out-of-sample.
Resumo:
Wireless Senor Networks(WSNs) detect events using one or more sensors, then collect data from detected events using these sensors. This data is aggregated and forwarded to a base station(sink) through wireless communication to provide the required operations. Different kinds of MAC and routing protocols need to be designed for WSN in order to guarantee data delivery from the source nodes to the sink. Some of the proposed MAC protocols for WSN with their techniques, advantages and disadvantages in the terms of their suitability for real time applications are discussed in this paper. We have concluded that most of these protocols can not be applied to real time applications without improvement
Resumo:
Model-based estimates of future uncertainty are generally based on the in-sample fit of the model, as when Box-Jenkins prediction intervals are calculated. However, this approach will generate biased uncertainty estimates in real time when there are data revisions. A simple remedy is suggested, and used to generate more accurate prediction intervals for 25 macroeconomic variables, in line with the theory. A simulation study based on an empirically-estimated model of data revisions for US output growth is used to investigate small-sample properties.
Validation of a priori CME arrival predictions made using real-time heliospheric imager observations
Resumo:
Between December 2010 and March 2013, volunteers for the Solar Stormwatch (SSW) Citizen Science project have identified and analyzed coronal mass ejections (CMEs) in the near real-time Solar Terrestrial Relations Observatory Heliospheric Imager observations, in order to make “Fearless Forecasts” of CME arrival times and speeds at Earth. Of the 60 predictions of Earth-directed CMEs, 20 resulted in an identifiable Interplanetary CME (ICME) at Earth within 1.5–6 days, with an average error in predicted transit time of 22 h, and average transit time of 82.3 h. The average error in predicting arrival speed is 151 km s−1, with an average arrival speed of 425km s−1. In the same time period, there were 44 CMEs for which there are no corresponding SSW predictions, and there were 600 days on which there was neither a CME predicted nor observed. A number of metrics show that the SSW predictions do have useful forecast skill; however, there is still much room for improvement. We investigate potential improvements by using SSW inputs in three models of ICME propagation: two of constant acceleration and one of aerodynamic drag. We find that taking account of interplanetary acceleration can improve the average errors of transit time to 19 h and arrival speed to 77 km s−1.
Resumo:
An important application of Big Data Analytics is the real-time analysis of streaming data. Streaming data imposes unique challenges to data mining algorithms, such as concept drifts, the need to analyse the data on the fly due to unbounded data streams and scalable algorithms due to potentially high throughput of data. Real-time classification algorithms that are adaptive to concept drifts and fast exist, however, most approaches are not naturally parallel and are thus limited in their scalability. This paper presents work on the Micro-Cluster Nearest Neighbour (MC-NN) classifier. MC-NN is based on an adaptive statistical data summary based on Micro-Clusters. MC-NN is very fast and adaptive to concept drift whilst maintaining the parallel properties of the base KNN classifier. Also MC-NN is competitive compared with existing data stream classifiers in terms of accuracy and speed.
Resumo:
The real-time quality control (RTQC) methods applied to Argo profiling float data by the United Kingdom (UK) Met Office, the United States (US) Fleet Numerical Meteorology and Oceanography Centre, the Australian Bureau of Meteorology and the Coriolis Centre are compared and contrasted. Data are taken from the period 2007 to 2011 inclusive and RTQC performance is assessed with respect to Argo delayed-mode quality control (DMQC). An intercomparison of RTQC techniques is performed using a common data set of profiles from 2010 and 2011. The RTQC systems are found to have similar power in identifying faulty Argo profiles but to vary widely in the number of good profiles incorrectly rejected. The efficacy of individual QC tests are inferred from the results of the intercomparison. Techniques to increase QC performance are discussed.
Resumo:
Current knowledge of the pathogenic hantavirus indicates that wild rodents are its primary natural reservoir. Specific primers to detect the presence of viral genomes were developed using an SYBR-Green-based real-time RT-PCR protocol. One hundred sixty-four rodents native to the Atlantic Forest biome were captured in So Paulo State, Brazil, and their tissues were tested. The presence of hantavirus RNA was detected in sixteen rodents: three specimens of Akodon montensis, three of Akodon cursor, two of Necromys lasiurus, one of Juliomys sp., one of Thaptomys nigrita, five of Oligoryzomys nigripes, and one of Oryzomys sp. This SYBR Green real-time RT-PCR method for detection of hantavirus may be useful for surveying hantaviruses in Brazil.