852 resultados para RCE-PD (resonant-cavity-enhanced photodiode)
Resumo:
Large secondary-nesting birds such as ducks rely on appropriate cavities for breeding. The main objective of this study was to assess the availability of large cavities and the potential of a managed boreal coniferous landscape to provide nesting trees within the breeding area of the eastern population of Barrow’s Goldeneye (Bucephala islandica), a cavity-nesting species at risk in Canada. Woodpecker surveys were conducted in both conifer and mixed-wood landscapes, and cavities were sought in line transects distributed in unharvested and linear remnant stands of balsam fir (Abies balsamea) and black spruce (Picea mariana) as well as in cutblocks. No Pileated Woodpeckers (Dryocopus pileatus) were detected in the breeding area of Barrow’s Goldeneye, but the species was present in the nearby lowland area in which trembling aspen (Populus tremuloides) is abundant. Only 10 trees (0.2% of those sampled) supported cavities considered suitable for Barrow’s Goldeneye in terms of dimensions and canopy openness. Most of the suitable cavities found during this study were nonexcavated apical (chimney) cavities in relatively short snags that showed advanced states of decay. A diameter-at-breast-height threshold was determined for each tree species, after which the probability of cavity occurrence was enhanced in terms of potential cavity trees for Barrow’s Goldeneye. Remnant linear forest sites had lower potential tree densities than did their unharvested equivalents. Large cavities were thus a rare component in this boreal landscape, suggesting that they may be a limiting factor for this population at risk. Current even-aged forest management that mainly relies on clear-cut practices is likely to further reduce the potential of this landscape to provide trees with suitable cavities.
Resumo:
We show that small quantities of 1,3:2,4-di(4-chlorobenzylidene) sorbitol dispersed in poly(epsilon-caprolactone) provide a very effective self-assembling nanoscale framework which, with a flow field, yields extremely high levels of polymer crystal orientation. During modest shear flow of the polymer melt, the additive forms highly extended nano-particles which adopt a preferred alignment with respect to the flow field. On cooling, polymer crystallisation is directed by these particles. This chloro substituted dibenzylidene sorbitol is considerably more effective at directing the crystal growth of poly(epsilon-caprolactone) than the unsubstituted compound.
Resumo:
High biomass producing plant species, such as Helianthus annuus, have potential for removing large amounts of trace metals by harvesting the aboveground biomass if sufficient metal concentrations in their biomass can be achieved. However, the low bioavailability of heavy metals in soils and the limited translocation of heavy metals to the shoots by mosthigh biomass producing plant species limit the efficiency of the phytoextraction process. Amendment of a contaminated soil with ethylene diamine letraacetic acid (EDTA) or citric acid increases soluble heavy metal concentrations, potentially rendering them more available for plant uptake. This article discusses the effects of EDTA and citric acid on the uptake of heavy metals and translocation to aboveground harvestable plant parts in Helianthus annuus. EDTA was included in the research for comparison purposes in our quest for less persistent alternatives, suitable for enhanced phytoextraction. Plants were grown in a calcareous soil moderately contaminated with Cu, Pb, Zn, and Cd and treated with increasing concentrations of EDTA (0. 1, 1, 3, 5, 7, and 10 mmol kg(-1) soil) or citric acid (0. 01, 0. 05, 0.25, 0.442, and 0.5 mol kg(-1) soil). Heavy metal concentrations in harvested shoots increased with EDTA concentration but the actual amount of phytoextracted heavy metals decreased at high EDTA concentrations, due to severe growth depression. Helianthus annuus suffered heavy metal stress due to the significantly increased bioavailable metal fraction in the soil. The rapid mineralization of citric acid and the high buffering capacity of the soil made citric acid inefficient in increasing the phytoextracted amounts of heavy metals. Treatments that did not exceed the buffering capacity of the soil (< 0.442 mol kg(-1) soil) did not result in any significant increase in shoot heavy metal concentrations. Treatments with high concentrations resulted in a dissolution of the carbonates and compaction of the soil. These physicochemical changes caused growth depression of Helianthus annuus. EDTA and citric acid added before sowing of Helianthus annuus did not appear to be efficient amendments when phytoextraction of heavy metals from calcareous soils is considered.
Resumo:
Enhanced phytoextraction proposes the use of soil amendments to increase the heavy-metal content of above-ground harvestable plant tissues. This study compares the effect of synthetic aminopolycarboxylic acids [ethylenediamine tetraacetatic acid (EDTA), nitriloacetic acid (NTA), and diethylenetriamine pentaacetic acid (DTPA)] with a number of biodegradable, low-molecular weight, organic acids (citric acid, ascorbic acid, oxalic acid, salicylic acid, and NH4 acetate) as potential soil amendments for enhancing phytoextraction of heavy metals (Cu, Zn, Cd, Pb, and Ni) by Zea mays. The treatments in this study were applied at a dose of 2 mmol/kg(-1) 1 d before sowing. To compare possible effects between presow and postgermination treatments, a second smaller experiment was conducted in which EDTA, citric acid, and NH4 acetate were added 10 d after germination as opposed to 1 d before sowing. The soil used in this screening was a moderately contaminated topsoil derived from a dredged sediment disposal site. This site has been in an oxidized state for more than 8 years before being used in this research. The high carbonate, high organic matter, and high clay content characteristic to this type of sediment are thought to suppress heavy-metal phytoavailability. Both EDTA and DTPA resulted in increased levels of heavy metals in the above-ground biomass. However, the observed increases in uptake were not as large as reported in the literature. Neither the NTA nor organic acid treatments had any significant effect on uptake when applied prior to sowing. This was attributed to the rapid mineralization of these substances and the relatively low doses applied. The generally low extraction observed in this experiment restricts the use of phytoextraction as an effective remediation alternative under the current conditions, with regard to amendments used, applied dose (2 mmol/kg(-1) soil), application time (presow), plant species (Zea mays), and sediment (calcareous clayey soil) under study.
Resumo:
Phytoextraction, the use of plants to extract heavy metals from contaminated soils, could be an interesting alternative to conventional remediation technologies. However, calcareous soils with relatively high total metal contents are difficult to phytoremediate due to low soluble metal concentrations. Soil amendments such as ethylene diaminetetraacetate (EDTA) have been suggested to increase heavy metal bioavailability and uptake in aboveground plant parts. Strong persistence of EDTA and risks of leaching of potentially toxic metals and essential nutrients have led to research on easily biodegradable soilamendments such as citric acid. In our research, EDTA is regarded as a scientific benchmark with which degradable alternatives are compared for enhanced phytoextraction purposes. The effects of increasing doses of EDTA (0.1, 1, 10 mmol kg(-1) dry soil) and citric acid (0.01, 0.05,0.25,0.442, 0.5 mol kg(-1) dry soil) on bioavailable fractions of Cu, Zn, Cd, and Pb were assessed in one part of our study and results are presented in this article. The evolution of labile soil fractions of heavy metals over time was evaluated using water paste saturation extraction (similar to soluble fraction), extraction with 1 M NH4OAc at pH 7 (similar to exchangeable fraction), and extraction with 0.5 M NH4OAc + 0.5 M HOAc + 0.02 M EDTA atpH 4.65 (similar to potentially bioavailable fraction). Both citric acid and EDTA produced a rapid initial increase in labile heavy metal fractions. Metal mobilization remained constant in time for soils treated with EDTA, but metal fractions was noted for soils treated with citric acid. The half life of heavy metal mobilization by citric acid varied between 1.5 and 5.7 d. In the following article, the effect of heavy metal mobilization on uptake by Helianthus annutis will be presented.
Resumo:
Phytoextraction has been proposed as an alternative remediation technology for soils polluted with heavy metals or radionuclides, but is generally conceived as too slow working. Enhancing the accumulation of trace pollutants in harvestable plant tissues is a prerequisite for the technology to be practically applicable. The chelating aminopolycarboxylic acid, ethylene diamine tetraacetate (EDTA), has been found to enhance shoot accumulation of heavy metals. However, the use of EDTA in phytoextraction may not be suitable due to its high environmental persistence, which may lead to groundwater contamination. This paper aims to assess whether ethylene diamine disuccinate (EDDS), a biodegradable chelator, can be used for enhanced phytoextraction purposes. A laboratory experiment was conducted to examine mobilisation of Cd, Cu, Cr, Ni, Pb and Zn into the soil solution upon application of EDTA or EDDS. The longevity of the induced mobilisation was monitored for a period of 40 days after application. Estimated effect half lives ranged between 3.8 and 7.5 days for EDDS, depending on the applied dose. The minimum observed effect half life of EDTA was 36 days, while for the highest applied dose no decrease was observed throughout the 40 day period of the mobilisation experiment. Performance of EDTA and EDDS for phytoextraction was evaluated by application to Helianthus annuus. Two other potential chelators, known for their biodegradability in comparison to EDTA, were tested in the plant experiment: nitrilo acetic acid (NTA) and citric acid. Uptake of heavy metals was higher in EDDS-treated pots than in EDTA-treated pots. The effects were still considered insufficiently high to consider efficient remediation. This may be partly due to the choice of timing for application of the soil amendment. Fixing the time of application at an earlier point before harvest may yield better results. NTA and citric acid induced no significant effects on heavy metal uptake. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation.
Resumo:
Model catalysts of Pd nanoparticles and films on TiO2 (I 10) were fabricated by metal vapour deposition (MVD). Molecular beam measurements show that the particles are active for CO adsorption, with a global sticking probability of 0.25, but that they are deactivated by annealing above 600 K, an effect indicative of SMSI. The Pd nanoparticles are single crystals oriented with their (I 11) plane parallel to the surface plane of the titania. Analysis of the surface by atomic resolution STM shows that new structures have formed at the surface of the Pd nanoparticles and films after annealing above 800 K. There are only two structures, a zigzag arrangement and a much more complex "pinwheel" structure. The former has a unit cell containing 7 atoms, and the latter is a bigger unit cell containing 25 atoms. These new structures are due to an overlayer of titania that has appeared on the surface of the Pd nanoparticles after annealing, and it is proposed that the surface layer that causes the SMSI effect is a mixed alloy of Pd and Ti, with only two discrete ratios of atoms: Pd/Ti of 1: 1 (pinwheel) and 1:2 (zigzag). We propose that it is these structures that cause the SMSI effect. (c) 2005 Elsevier Inc. All rights reserved.
CO Oxidation and the CO/NO Reaction on Pd(110) Studied Using "Fast" XPS and a Molecular Beam Reactor
Resumo:
Calculations are reported of the magnetic anisotropy energy of two-dimensional (2D) Co nanostructures on a Pt(111) substrate. The perpendicular magnetic anisotropy (PMA) of the 2D Co clusters strongly depends on their size and shape, and rapidly decreases with increasing cluster size. The PMA calculated is in reasonable agreement with experimental results. The sensitivity of the results to the Co-Pt spacing at the interface is also investigated and, in particular, for a complete Co monolayer we note that the value of the spacing at the interface determines whether PMA or in-plane anisotropy occurs. We find that the PMA can be greatly enhanced by the addition of Pt adatoms to the top surface of the 2D Co clusters. A single Pt atom can induce in excess of 5 meV to the anisotropy energy of a cluster. In the absence of the Pt adatoms the PMA of the Co clusters falls below 1 meV/Co atom for clusters of about 10 atoms whereas, with Pt atoms added to the surface of the clusters, a PMA of 1 meV/Co atom can be maintained for clusters as large as about 40 atoms. The effect of placing Os atoms on the top of the Co clusters is also considered. The addition of 5d atoms and clusters on the top of ferromagnetic nanoparticles may provide an approach to tune the magnetic anisotropy and moment separately.
Resumo:
The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.