954 resultados para RBF NLGA reti neurali quadrotor identificazione Matlab simulatori controlli automatici


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reducing energy consumption is a major challenge for energy-intensive industries such as papermaking. A commercially viable energy saving solution is to employ data-based optimization techniques to obtain a set of optimized operational settings that satisfy certain performance indices. The difficulties of this are: 1) the problems of this type are inherently multicriteria in the sense that improving one performance index might result in compromising the other important measures; 2) practical systems often exhibit unknown complex dynamics and several interconnections which make the modeling task difficult; and 3) as the models are acquired from the existing historical data, they are valid only locally and extrapolations incorporate risk of increasing process variability. To overcome these difficulties, this paper presents a new decision support system for robust multiobjective optimization of interconnected processes. The plant is first divided into serially connected units to model the process, product quality, energy consumption, and corresponding uncertainty measures. Then multiobjective gradient descent algorithm is used to solve the problem in line with user's preference information. Finally, the optimization results are visualized for analysis and decision making. In practice, if further iterations of the optimization algorithm are considered, validity of the local models must be checked prior to proceeding to further iterations. The method is implemented by a MATLAB-based interactive tool DataExplorer supporting a range of data analysis, modeling, and multiobjective optimization techniques. The proposed approach was tested in two U.K.-based commercial paper mills where the aim was reducing steam consumption and increasing productivity while maintaining the product quality by optimization of vacuum pressures in forming and press sections. The experimental results demonstrate the effectiveness of the method. © 2006 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a new thermal model based on the Fourier series solution of heat conduction equation has been introduced in detail. 1-D and 2-D Fourier series thermal models have been programmed in MATLAB/Simulink. Compared with the traditional finite-difference thermal model and equivalent RC thermal network, the new thermal model can provide high simulation speed with high accuracy, which has been proved to be more favorable in dynamic thermal characterization on power semiconductor switches. The complete electrothermal simulation models of insulated gate bipolar transistor (IGBT) and power diodes under inductive load switching condition have been successfully implemented in MATLAB/Simulink. The experimental results on IGBT and power diodes with clamped inductive load switching tests have verified the new electrothermal simulation model. The advantage of Fourier series thermal model over widely used equivalent RC thermal network in dynamic thermal characterization has also been validated by the measured junction temperature.© 2010 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe the design steps and final implementation of a MIMO OFDM prototype platform developed to enhance the performance of wireless LAN standards such as HiperLAN/2 and 802.11, using multiple transmit and multiple receive antennas. We first describe the channel measurement campaign used to characterize the indoor operational propagation environment, and analyze the influence of the channel on code design through a ray-tracing channel simulator. We also comment on some antenna and RF issues which are of importance for the final realization of the testbed. Multiple coding, decoding, and channel estimation strategies are discussed and their respective performance-complexity trade-offs are evaluated over the realistic channel obtained from the propagation studies. Finally,we present the design methodology, including cross-validation of the Matlab, C++, and VHDL components, and the final demonstrator architecture. We highlight the increased measured performance of the MIMO testbed over the single-antenna system. £.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pavement condition assessment is essential when developing road network maintenance programs. In practice, the data collection process is to a large extent automated. However, pavement distress detection (cracks, potholes, etc.) is mostly performed manually, which is labor-intensive and time-consuming. Existing methods either rely on complete 3D surface reconstruction, which comes along with high equipment and computation costs, or make use of acceleration data, which can only provide preliminary and rough condition surveys. In this paper we present a method for automated pothole detection in asphalt pavement images. In the proposed method an image is first segmented into defect and non-defect regions using histogram shape-based thresholding. Based on the geometric properties of a defect region the potential pothole shape is approximated utilizing morphological thinning and elliptic regression. Subsequently, the texture inside a potential defect shape is extracted and compared with the texture of the surrounding non-defect pavement in order to determine if the region of interest represents an actual pothole. This methodology has been implemented in a MATLAB prototype, trained and tested on 120 pavement images. The results show that this method can detect potholes in asphalt pavement images with reasonable accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we compare different approaches to calculating the charge density in the 2DEG layer of AlGaN/GaN HEMTs. The methods used are (i) analytical theory implemented in MATLAB, (ii) finite-element analysis using semiconductor TCAD software that implements only the Poisson and continuity equations, and (iii) 1D software that solves the Poisson and Schrödinger equations self-consistently. By using the 1D Poisson-Schrödinger solver, we highlight the consequences of neglecting the Schrödinger equation. We conclude that the TCAD simulator predicts with a reasonable level of accuracy the electron density in the 2DEG layer for both a conventional HEMT structure and one featuring an extra GaN cap layer. In addition, while the sheet charge density is not significantly affected by including Schrödinger, its confinement in the channel is found to be modified. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ocean represents a huge energy reservoir since waves can be exploited to generate clean and renewable electricity; however, a hybrid energy storage system is needed to smooth the fluctuation. In this paper a hybrid energy storage system using a superconducting magnetic energy system (SMES) and Li-ion battery is proposed. The SMES is designed using Yttrium Barium Copper Oxide (YBCO) tapes, which store 60 kJ electrical energy. The magnet component of the SMES is designed using global optimization algorithm. Mechanical stress, coupled with electromagnetic field, is calculated using COMSOL and Matlab. A cooling system is presented and a suitable refrigerator is chosen to maintain a cold working temperature taking into account four heat sources. Then a microgrid system of direct drive linear wave energy converters is designed. The interface circuit connecting the generator and storage system is given. The result reveals that the fluctuated power from direct drive linear wave energy converters is smoothed by the hybrid energy storage system. The maximum power of the wave energy converter is 10 kW. © 2012 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a hierarchical probabilistic model for ordinal matrix factorization. Unlike previous approaches, we model the ordinal nature of the data and take a principled approach to incorporating priors for the hidden variables. Two algorithms are presented for inference, one based on Gibbs sampling and one based on variational Bayes. Importantly, these algorithms may be implemented in the factorization of very large matrices with missing entries. The model is evaluated on a collaborative filtering task, where users have rated a collection of movies and the system is asked to predict their ratings for other movies. The Netflix data set is used for evaluation, which consists of around 100 million ratings. Using root mean-squared error (RMSE) as an evaluation metric, results show that the suggested model outperforms alternative factorization techniques. Results also show how Gibbs sampling outperforms variational Bayes on this task, despite the large number of ratings and model parameters. Matlab implementations of the proposed algorithms are available from cogsys.imm.dtu.dk/ordinalmatrixfactorization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This book presents physics-based models of bipolar power semiconductor devices and their implementation in MATLAB and Simulink. The devices are subdivided into different regions, and the operation in each region, along with the interactions at the interfaces which are analyzed using basic semiconductor physics equations that govern their behavior. The Fourier series solution is used to solve the ambipolar diffusion equation in the lightly doped drift region of the devices. In addition to the external electrical characteristics, internal physical and electrical information, such as the junction voltages and the carrier distribution in different regions of the device, can be obtained using the models. Table of Contents: Introduction to Power Semiconductor Device Modeling/Physics of Power Semiconductor Devices/Modeling of a Power Diode and IGBT/IGBT Under an Inductive Load-Switching Condition in Simulink/Parameter Extraction. © 2013 by Morgan & Claypool.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Confronted with high variety and low volume market demands, many companies, especially the Japanese electronics manufacturing companies, have reconfigured their conveyor assembly lines and adopted seru production systems. Seru production system is a new type of work-cell-based manufacturing system. A lot of successful practices and experience show that seru production system can gain considerable flexibility of job shop and high efficiency of conveyor assembly line. In implementing seru production, the multi-skilled worker is the most important precondition, and some issues about multi-skilled workers are central and foremost. In this paper, we investigate the training and assignment problem of workers when a conveyor assembly line is entirely reconfigured into several serus. We formulate a mathematical model with double objectives which aim to minimize the total training cost and to balance the total processing times among multi-skilled workers in each seru. To obtain the satisfied task-to-worker training plan and worker-to-seru assignment plan, a three-stage heuristic algorithm with nine steps is developed to solve this mathematical model. Then, several computational cases are taken and computed by MATLAB programming. The computation and analysis results validate the performances of the proposed mathematical model and heuristic algorithm. © 2013 Springer-Verlag London.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomimetic pattern recogntion (BPR), which is based on "cognition" instead of "classification", is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC), which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the "similarity" among homologous group members, rather than "division" in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the introduction of the traditional mathematical models of neurons in general-purpose neurocomputer, a novel all-purpose mathematical model-Double synaptic weight neuron (DSWN) is presented, which can simulate all kinds of neuron architectures, including Radial-Basis-Function (RBF) and Back-propagation (BP) models, etc. At the same time, this new model is realized using hardware and implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. In this paper, the flexibility of the new model has also been described in constructing neural networks and based on the theory of Biomimetic pattern recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-H neurocomputer. The result showed DSWN neural network has great potential in pattern recognition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new model of pattern recognition principles-Biomimetic Pattern Recognition, which is based on "matter cognition" instead of "matter classification", has been proposed. As a important means realizing Biomimetic Pattern Recognition, the mathematical model and analyzing method of ANN get breakthrough: a novel all-purpose mathematical model has been advanced, which can simulate all kinds of neuron architecture, including RBF and BP models. As the same time this model has been realized using hardware; the high-dimension space geometry method, a new means to analyzing ANN, has been researched.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article mainly focuses on the simulation of the single electron device and circuit. The orthodox model of single electronic device is introduced and the simulation with Matlab and Pspice is illustrated in the article. Moreover, the built of robust circuit using single electronic according to neural network is done and the simulation is also included in the paper. The result shows that neural network added with proper redundancy is an available candidate for single electron device circuit. The proposed structure is also promising for the realization of low ultra-low power consumption and solution of transient device failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Double weighted neural network; is a kind of new general used neural network, which, compared with BP and RBF network, may approximate the training samples with a move complicated geometric figure and possesses a even greater approximation. capability. we study structure approximate based on double weighted neural network and prove its rationality.