1000 resultados para R. Laurich
Resumo:
A tuple $(T_1,\dots,T_n)$ of continuous linear operators on a topological vector space $X$ is called hypercyclic if there is $x\in X$ such that the the orbit of $x$ under the action of the semigroup generated by $T_1,\dots,T_n$ is dense in $X$. This concept was introduced by N.~Feldman, who have raised 7 questions on hypercyclic tuples. We answer those 4 of them, which can be dealt with on the level of operators on finite dimensional spaces. Inr/>particular, we prove that the minimal cardinality of a hypercyclic tuple of operators on $\C^n$ (respectively, on $\R^n$) is $n+1$ (respectively, $\frac n2+\frac{5+(-1)^n}{4}$), that there are non-diagonalizable tuples of operators on $\R^2$ which possess an orbit being neither dense nor nowhere dense and construct a hypercyclic 6-tuple of operators on $\C^3$ such that every operator commuting with each member of the tuple is non-cyclic.
Resumo:
We have developed the capability to determine accurate harmonic spectra for multielectron atoms within time-dependent R-matrix (TDRM) theory. Harmonic spectra can be calculated using the expectation value of the dipole length, velocity, or acceleration operator. We assess the calculation of the harmonic spectrum from He irradiated by 390-nm laser light with intensities up to 4 x 10(14) W cm(-2) using each form, including the influence of the multielectron basis used in the TDRM code. The spectra are consistent between the different forms, although the dipole acceleration calculation breaks down at lower harmonics. The results obtained from TDRM theory are compared with results from the HELIUM code, finding good quantitative agreement between the methods. We find that bases which include pseudostates give the best comparison with the HELIUM code, but models comprising only physical orbitals also produce accurate results.
Resumo:
The aim of this study is to compare the positioning accuracy at different gantry angles of two electronic portal imaging devices (EPIDs) support arm systems by using EPID difference images as a measure for displacement. This work presents a comparison of the mechanical performance of eight Varian aS500 (Varian Medical Systems, Palo Alto, CA) EPIDs, mounted using either the Varian Exact-arm or R-arm.
Resumo:
NiTi alloys have been widely used in the applications for micro-electro-mechanical-systems (MEMS), which often involve some precise and complex motion control. However, when using the NiTi alloys in MEMS application, the main problem to be considered is the degradation of functional property during cycling loading. This also stresses the importance of accurate prediction of the functional behavior of NiTi alloys. In the last two decades, a large number of constitutive models have been proposed to achieve the task. A portion of them focused on the deformation behavior of NiTi alloys under cyclic loading, which is a practical and non-negligible situation. Despite of the scale of modeling studies of the field in NiTi alloys, two experimental observations under uniaxial tension loading have not received proper attentions. First, a deviation from linearity well before the stress-induced martensitic transformation (SIMT) has not been modeled. Recent experiments confirmed that it is caused by the formation of stress-induced R phase. Second, the influence of the well-known localized Lüders-like SIMT on the macroscopic behavior of NiTi alloys, in particular the residual strain during cyclic loading, has not been addressed. In response, we develop a 1-D phenomenological constitutive model for NiTi alloys with two novel features: the formation of stress-induced R phase and the explicit modeling of the localized Lüders-like SIMT. The derived constitutive relations are simple and at the same time sufficient to describe the behavior of NiTi alloys. The accumulation of residual strain caused by R phase under different loading schemes is accurately described by the proposed model. Also, the residual strain caused by irreversible SIMT at different maximum loading strain under cyclic tension loading in individual samples can be explained by and fitted into a single equation in the proposed model. These results show that the proposed model successfully captures the behavior of R phase and the essence of localized SIMT.