798 resultados para Queens
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of the city and county of New York : with the adjacent country, by David H. Burr. It was published by D.H. Burr for the Atlas of the state of New York, 1829. Scale [ca. 1:20,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers Manhattan and adjacent portions of Brooklyn, Queens, and New Jersey. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, drainage, selected public buildings, city wards, ferry lines, wharves, forts and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Harlem, N.Y.-N.J., 1956. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was compiled from 1:24,000-scale maps of Mount Vernon 1956, Yonkers 1956, Central Park 1956, and Flushing 1955 7.5 minute quadrangles. Hydrography compiled from USC&GS charts 222 (1955), 223 (1954), 748 (1955), 226, 274, 745, 746, and 747 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Oyster Bay, N.Y.-Conn., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Bayville 1954, Mamaroneck 1955, Sea Cliff 1954, and Hicksville 1954 7.5 minute quadrangles compiled by the Army Map Service. The Mamaroneck quadrangle was previously compiled by the Geological Survey in 1933 and 1934. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 222 (1955), 223 (1954, 1955), and 224 (1954). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Brooklyn, N.Y.-N.J., 1957. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Jamaica 1957, Brooklyn 1956, Coney Island 1955, and Far Rockaway 1954 7.5 minute quadrangles. The Far Rockaway quadrangle was previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 542 (1955), 745 (1956), and 369 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Hempstead, N.Y., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Freeport 1955, Lynbrook, Lawrence, and Jones Inlet 1954 7.5 minute quadrangles. All quadrangles except Jones Inlet were previously compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 579A (1953), 579B (1953), 542 (1955) and 1215 (1947). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map showing routes & stations on the dual system October, 1918. It was published by State of New York Public Service Commission for the First District in 1918. Scale [ca. 1:46,000]. Covers Manhattan, Queens, Brooklyn, and Bronx, New York, N.Y. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as subway and elevated railroad lines and stations, drainage, and more. Includes inset: Sub Plan. Includes legend and key. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This study explores the curriculum at Queen’s-affiliated medical colleges, specifically The Royal College of Physicians and Surgeons, Kingston, the Kingston Women’s Medical College, and Queen’s Medical College, from 1881 to 1910, using the textbooks prescribed by these institutions as primary sources. The central question encompasses what factors primarily motivated the curriculum at Queen’s-affiliated medical colleges to change. Within the historiographical scholarship on Queen’s College, this question has not yet been addressed and, to my knowledge, this is the first medical education history to specifically address textbooks as part of a medical school curriculum. During this period, these institutions experienced reorganizational shifts, such as the reunification of Queen’s Medical College with The Royal College of Physicians and Surgeons, Kingston, as well as the introduction and subsequent exclusion of female students. Within this context, this study examines how the forces of scientific innovation and co-education impacted the curriculum during the period under study, as measured by textbook change, specifically in the courses of obstetrics and gynaecology, the theory and practice of medicine, and surgery. To what degree was curriculum in these courses responsive to scientific inventions and discoveries, changing therapeutic practices, and possible gender biases? From 1881 to 1910, innovations such as x-ray and anaesthesia became commonplace within medical practice. Some technologies gained acceptance in the curriculum, while others fell out of favour. This study tracks these scientific discoveries through the textbooks used at Queen’s-affiliated medical colleges in order to demonstrate how the evolving nature of medicine was represented in the curriculum. To address how gender influenced the curriculum, textbooks from the Kingston Women’s Medical College and The Royal College of Physicians and Surgeons, Kingston, were compared. For two out of the three examined courses, it was found that sections of textbooks discussing various topics at the Kingston Women’s Medical College contained significantly more detail than their corresponding sections within The Royal College’s textbooks. It was speculated that the instructors preferred to teach their female students through textbooks, rather than lectures.
Resumo:
Performing Pedagogies was a week-long performance and exhibition series I organized that took place in Kingston, Ontario between March 15th - March 20th 2016. The motivation for this project came from a desire to explore performative modes of experiencing critical, embodied knowledge. The series featured five performances, a long distance collaboration between thirty-one Queen’s undergraduate students and a Vancouver artist-run free school (The School for Eventual Vacancy), a subsequent exhibition, a panel discussion, and a radical performance pedagogy workshop led by co-artistic director of the international performance art troupe, La Pocha Nostra. Artists featured included Golboo Amani, Basil AlZeri, Caitlin Chaisson, Justin Langlois, Saul Garcia-Lopez, Francisco-Fernando Granados, and Andrew Rabyniuk. By curating examples of performance art that variously incorporated embodied pedagogical interventions, I examined the processes of performance as pedagogy. Performing Pedagogies explored interventions into contemporary contours of neoliberal education paradigms through embodied encounters—fostering conversations about the meanings and limitations of knowledge dissemination and education today and posing questions about possibilities for radical pedagogies, embodied knowledge, and counter curricula.
Resumo:
Performing Pedagogies was a week-long performance and exhibition series I organized that took place in Kingston, Ontario between March 15th - March 20th 2016. The motivation for this project came from a desire to explore performative modes of experiencing critical, embodied knowledge. The series featured five performances, a long distance collaboration between thirty-one Queen’s undergraduate students and a Vancouver artist-run free school (The School for Eventual Vacancy), a subsequent exhibition, a panel discussion, and a radical performance pedagogy workshop led by co-artistic director of the international performance art troupe, La Pocha Nostra. Artists featured included Golboo Amani, Basil AlZeri, Caitlin Chaisson, Justin Langlois, Saul Garcia-Lopez, Francisco-Fernando Granados, and Andrew Rabyniuk. By curating examples of performance art that variously incorporated embodied pedagogical interventions, I examined the processes of performance as pedagogy. Performing Pedagogies explored interventions into contemporary contours of neoliberal education paradigms through embodied encounters—fostering conversations about the meanings and limitations of knowledge dissemination and education today and posing questions about possibilities for radical pedagogies, embodied knowledge, and counter curricula.
Resumo:
The integration of mathematics and science in secondary schools in the 21st century continues to be an important topic of practice and research. The purpose of my research study, which builds on studies by Frykholm and Glasson (2005) and Berlin and White (2010), is to explore the potential constraints and benefits of integrating mathematics and science in Ontario secondary schools based on the perspectives of in-service and pre-service teachers with various math and/or science backgrounds. A qualitative and quantitative research design with an exploratory approach was used. The qualitative data was collected from a sample of 12 in-service teachers with various math and/or science backgrounds recruited from two school boards in Eastern Ontario. The quantitative and some qualitative data was collected from a sample of 81 pre-service teachers from the Queen’s University Bachelor of Education (B.Ed) program. Semi-structured interviews were conducted with the in-service teachers while a survey and a focus group was conducted with the pre-service teachers. Once the data was collected, the qualitative data were abductively analyzed. For the quantitative data, descriptive and inferential statistics (one-way ANOVAs and Pearson Chi Square analyses) were calculated to examine perspectives of teachers regardless of teaching background and to compare groups of teachers based on teaching background. The findings of this study suggest that in-service and pre-service teachers have a positive attitude towards the integration of math and science and view it as valuable to student learning and success. The pre-service teachers viewed the integration as easy and did not express concerns to this integration. On the other hand, the in-service teachers highlighted concerns and challenges such as resources, scheduling, and time constraints. My results illustrate when teachers perceive it is valuable to integrate math and science and which aspects of the classroom benefit best from the integration. Furthermore, the results highlight barriers and possible solutions to better the integration of math and science. In addition to the benefits and constraints of integration, my results illustrate why some teachers may opt out of integrating math and science and the different strategies teachers have incorporated to integrate math and science in their classroom.
Resumo:
In order to become better prepared to support Research Data Management (RDM) practices in sciences and engineering, Queen’s University Library, together with the University Research Services, conducted a research study of all ranks of faculty members, as well as postdoctoral fellows and graduate students at the Faculty of Engineering & Applied Science, Departments of Chemistry, Computer Science, Geological Sciences and Geological Engineering, Mathematics and Statistics, Physics, Engineering Physics & Astronomy, School of Environmental Studies, and Geography & Planning in the Faculty of Arts and Science.
Resumo:
Wireless sensor networks (WSNs) have shown wide applicability to many fields including monitoring of environmental, civil, and industrial settings. WSNs however are resource constrained by many competing factors that span their hardware, software, and networking. One of the central resource constrains is the charge consumption of WSN nodes. With finite energy supplies, low charge consumption is needed to ensure long lifetimes and success of WSNs. This thesis details the design of a power system to support long-term operation of WSNs. The power system’s development occurs in parallel with a custom WSN from the Queen’s MEMS Lab (QML-WSN), with the goal of supporting a 1+ year lifetime without sacrificing functionality. The final power system design utilizes a TPS62740 DC-DC converter with AA alkaline batteries to efficiently supply the nodes while providing battery monitoring functionality and an expansion slot for future development. Testing tools for measuring current draw and charge consumption were created along with analysis and processing software. Through their use charge consumption of the power system was drastically lowered and issues in QML-WSN were identified and resolved including the proper shutdown of accelerometers, and incorrect microcontroller unit (MCU) power pin connection. Controlled current profiling revealed unexpected behaviour of nodes and detailed current-voltage relationships. These relationships were utilized with a lifetime projection model to estimate a lifetime between 521-551 days, depending on the mode of operation. The power system and QML-WSN were tested over a long term trial lasting 272+ days in an industrial testbed to monitor an air compressor pump. Environmental factors were found to influence the behaviour of nodes leading to increased charge consumption, while a node in an office setting was still operating at the conclusion of the trail. This agrees with the lifetime projection and gives a strong indication that a 1+ year lifetime is achievable. Additionally, a light-weight charge consumption model was developed which allows charge consumption information of nodes in a distributed WSN to be monitored. This model was tested in a laboratory setting demonstrating +95% accuracy for high packet reception rate WSNs across varying data rates, battery supply capacities, and runtimes up to full battery depletion.
Resumo:
Intracellular endosymbiotic bacteria are common and can play a crucial role for insect pathology. Therefore, such bacteria could be a potential key to our understanding of major losses of Western honey bees (Apis mellifera) colonies. However, the transmission and potential effects of endosymbiotic bacteria in A. mellifera and other Apis spp. are poorly understood. Here, we explore the prevalence and transmission of the genera Arsenophonus, Wolbachia, Spiroplasma and Rickettsia in Apis spp. Colonies of A. mellifera (N = 33, with 20 eggs from worker brood cells and 100 adult workers each) as well as mated honey bee queens of A. cerana, A. dorsata and A. florea (N = 12 each) were screened using PCR. While Wolbachia, Spiroplasma and Rickettsia were not detected, Arsenophonus spp. were found in 24.2% of A. mellifera colonies and respective queens as well as in queens of A. dorsata (8.3%) and A. florea (8.3%), but not in A. cerana. The absence of Arsenophonus spp. from reproductive organs of A. mellifera queens and surface-sterilized eggs does not support transovarial vertical transmission. Instead, horizontal transmission is most likely.
Resumo:
1949-1950 Miss Homecoming
Resumo:
1946-1947 Miss Homecoming