930 resultados para Quasi-stellar Objects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accurate electron density distribution and magnetic properties of two metal-organic polymeric magnets, the quasi-one-dimensional (1D) Cu(pyz)(NO3)2 and the quasi-two-dimensional (2D) [Cu(pyz)2(NO3)]NO3·H2O, have been investigated by high-resolution single-crystal X-ray diffraction and density functional theory calculations on the whole periodic systems and on selected fragments. Topological analyses, based on quantum theory of atoms in molecules, enabled the characterization of possible magnetic exchange pathways and the establishment of relationships between the electron (charge and spin) densities and the exchange-coupling constants. In both compounds, the experimentally observed antiferromagnetic coupling can be quantitatively explained by the Cu-Cu superexchange pathway mediated by the pyrazine bridging ligands, via a σ-type interaction. From topological analyses of experimental charge-density data, we show for the first time that the pyrazine tilt angle does not play a role in determining the strength of the magnetic interaction. Taken in combination with molecular orbital analysis and spin density calculations, we find a synergistic relationship between spin delocalization and spin polarization mechanisms and that both determine the bulk magnetic behavior of these Cu(II)-pyz coordination polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contribution of this article demonstrates how to identify context-aware types of e-Learning objects (eLOs) derived from the subject domains. This perspective is taken from an engineering point of view and is applied during requirements elicitation and analysis relating to present work in constructing an object-oriented (OO), dynamic, and adaptive model to build and deliver packaged e-Learning courses. Consequently, three preliminary subject domains are presented and, as a result, three primitive types of eLOs are posited. These types educed from the subject domains are of structural, conceptual, and granular nature. Structural objects are responsible for the course itself, conceptual objects incorporate adaptive and logical interoperability, while granular objects congregate granular assets. Their differences, interrelationships, and responsibilities are discussed. A major design challenge relates to adaptive behaviour. Future research addresses refinement on the subject domains and adaptive hypermedia systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Libraries of learning objects may serve as basis for deriving course offerings that are customized to the needs of different learning communities or even individuals. Several ways of organizing this course composition process are discussed. Course composition needs a clear understanding of the dependencies between the learning objects. Therefore we discuss the metadata for object relationships proposed in different standardization projects and especially those suggested in the Dublin Core Metadata Initiative. Based on these metadata we construct adjacency matrices and graphs. We show how Gozinto-type computations can be used to determine direct and indirect prerequisites for certain learning objects. The metadata may also be used to define integer programming models which can be applied to support the instructor in formulating his specifications for selecting objects or which allow a computer agent to automatically select learning objects. Such decision models could also be helpful for a learner navigating through a library of learning objects. We also sketch a graph-based procedure for manual or automatic sequencing of the learning objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We explore the possibility that the stellar relative abundances of different species can be used to constrain the bulk abundances of known transiting rocky planets. Methods. We use high resolution spectra to derive stellar parameters and chemical abundances for Fe, Si, Mg, O, and C in three stars hosting low mass, rocky planets: CoRoT-7, Kepler-10, and Kepler-93. These planets follow the same line along the mass-radius diagram, pointing toward a similar composition. The derived abundance ratios are compared with the solar values. With a simple stoichiometric model, we estimate the iron mass fraction in each planet, assuming stellar composition. Results. We show that in all cases, the iron mass fraction inferred from the mass-radius relationship seems to be in good agreement with the iron abundance derived from the host star's photospheric composition. Conclusions. The results suggest that stellar abundances can be used to add constraints on the composition of orbiting rocky planets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small, cool planets represent the typical end-products of planetary formation. Studying the architectures of these systems, measuring planet masses and radii, and observing these planets' atmospheres during transit directly informs theories of planet assembly, migration, and evolution. Here we report the discovery of three small planets orbiting a bright (K-s = 8.6 mag) M0 dwarf using data collected as part of K2, the new ecliptic survey using the repurposed Kepler spacecraft. Stellar spectroscopy and K2 photometry indicate that the system hosts three transiting planets with radii 1.5-2.1 R-circle plus, straddling the transition region between rocky and increasingly volatile-dominated compositions. With orbital periods of 10-45 days the planets receive just 1.5-10x the flux incident on Earth, making these some of the coolest small planets known orbiting a nearby star; planet d is located near the inner edge of the system's habitable zone. The bright, low-mass star makes this system an excellent laboratory to determine the planets' masses via Doppler spectroscopy and to constrain their atmospheric compositions via transit spectroscopy. This discovery demonstrates the ability of K2 and future space-based transit searches to find many fascinating objects of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. The main goal of this work is to study element ratios that are important for the formation of planets of different masses. Methods. We study potential correlations between the existence of planetary companions and the relative elemental abundances of their host stars. We use a large sample of FGK-type dwarf stars for which precise Mg, Si, and Fe abundances have been derived using HARPS high-resolution and high-quality data. Results. A first analysis of the data suggests that low-mass planet host stars show higher [Mg/Si] ratios, while giant planet hosts present [Mg/Si] that is lower than field stars. However, we found that the [Mg/Si] ratio significantly depends on metallicity through Galactic chemical evolution. After removing the Galactic evolution trend only the difference in the [Mg/Si] elemental ratio between low-mass planet hosts and non-hosts was present in a significant way. These results suggest that low-mass planets are more prevalent around stars with high [Mg/Si]. Conclusions. Our results demonstrate the importance of Galactic chemical evolution and indicate that it may play an important role in the planetary internal structure and composition. The results also show that abundance ratios may be a very relevant issue for our understanding of planet formation and evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of operations on representations of objects is well documented in the realm of spatial engineering. However, the mathematical structure and formal proof of these operational phenomena are not thoroughly explored. Other works have often focused on query-based models that seek to order classes and instances of objects in the form of semantic hierarchies or graphs. In some models, nodes of graphs represent objects and are connected by edges that represent different types of coarsening operators. This work, however, studies how the coarsening operator "simplification" can manipulate partitions of finite sets, independent from objects and their attributes. Partitions that are "simplified first have a collection of elements filtered (removed), and then the remaining partition is amalgamated (some sub-collections are unified). Simplification has many interesting mathematical properties. A finite composition of simplifications can also be accomplished with some single simplification. Also, if one partition is a simplification of the other, the simplified partition is defined to be less than the other partition according to the simp relation. This relation is shown to be a partial-order relation based on simplification. Collections of partitions can not only be proven to have a partial- order structure, but also have a lattice structure and are complete. In regard to a geographic information system (GIs), partitions related to subsets of attribute domains for objects are called views. Objects belong to different views based whether or not their attribute values lie in the underlying view domain. Given a particular view, objects with their attribute n-tuple codings contained in the view are part of the actualization set on views, and objects are labeled according to the particular subset of the view in which their coding lies. Though the scope of the work does not mainly focus on queries related directly to geographic objects, it provides verification for the existence of particular views in a system with this underlying structure. Given a finite attribute domain, one can say with mathematical certainty that different views of objects are partially ordered by simplification, and every collection of views has a greatest lower bound and least upper bound, which provides the validity for exploring queries in this regard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alexander's Dictum--"to be is to have causal powers"--appears to furnish an argument against the reality of familiar medium-sized objects. For every time a familiar object appears to cause a familiar macro-event, it sets up a rival claim by its component microparticles to have caused the complex swarm of microphysical events that composes into that macro-event. But this argument, argues this paper, wrongly assumes that even after familiar objects are removed from the picture, there is a phenomenon of joint causation which unites all and only the microparticles within each familiar object.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvements in the analysis of microarray images are critical for accurately quantifying gene expression levels. The acquisition of accurate spot intensities directly influences the results and interpretation of statistical analyses. This dissertation discusses the implementation of a novel approach to the analysis of cDNA microarray images. We use a stellar photometric model, the Moffat function, to quantify microarray spots from nylon microarray images. The inherent flexibility of the Moffat shape model makes it ideal for quantifying microarray spots. We apply our novel approach to a Wilms' tumor microarray study and compare our results with a fixed-circle segmentation approach for spot quantification. Our results suggest that different spot feature extraction methods can have an impact on the ability of statistical methods to identify differentially expressed genes. We also used the Moffat function to simulate a series of microarray images under various experimental conditions. These simulations were used to validate the performance of various statistical methods for identifying differentially expressed genes. Our simulation results indicate that tests taking into account the dependency between mean spot intensity and variance estimation, such as the smoothened t-test, can better identify differentially expressed genes, especially when the number of replicates and mean fold change are low. The analysis of the simulations also showed that overall, a rank sum test (Mann-Whitney) performed well at identifying differentially expressed genes. Previous work has suggested the strengths of nonparametric approaches for identifying differentially expressed genes. We also show that multivariate approaches, such as hierarchical and k-means cluster analysis along with principal components analysis, are only effective at classifying samples when replicate numbers and mean fold change are high. Finally, we show how our stellar shape model approach can be extended to the analysis of 2D-gel images by adapting the Moffat function to take into account the elliptical nature of spots in such images. Our results indicate that stellar shape models offer a previously unexplored approach for the quantification of 2D-gel spots. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small glassy spheres, ellipsoids, teardrops, cylinders and dumbbells occur in large numbers in Tertiary deep sea clays cored in the northeastern Pacific by the Deep Sea Drilling Project. These objects morphologically resemble microtektites, but have the composition of an oceanic tholeiite. On the basis of their composition and stratigraphic relationship it is considered that they are of volcanic origin and most likely have been formed in deep water by submarine volcanic processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The datasets present measurements of cDOM absorption in lakes, rivers and streams of Yamal and Gydan Peninsula area during the summer periods from 2012-2014 and 2016. In summer seasons of 2012 - 2013 water samples was collected during "Yamal-Arctic" Expedition. All of the research areas were located near the coastline of Yamal, Yavay, and Gydan Peninsula and Bely Island. In 2012 water samples from rivers, lakes and streams were taken near New Port, Cape Kamenny and Tambey settlements and in basins (water catchments) of the Sabetta, Seyakha, Yuribey (Baydaratskaya Bay, Gydan Peninsula) and Mongocheyakha rivers. In 2013 water samples from rivers, lakes and streams were taken in the Yavai Peninsula, Yayne Vong bay and in the basins (water catchments) of the Sabetta, Mongocheyakha and Yuribey (Gydan Peninsula) rivers. In 2014 lakes were sampled in the Erkuta River basin, south of Yamal Peninsula. In 2016 lakes and rivers were sampled it the Erkuta River basin and Polar Ural area. cDOM is operationally defined by the chosen filter pore size. Samples have been consistently filtrated through 0.7 µm pore size glas fibre filters. cDOM filtrates have been stored in darkness and have been measured after the expedition using the dual-beam Specord200 laboratory spectrometer (Jena Analytik) at the Otto Schmidt Laboratory OSL, Arctic and Antarctic Research Institute, St. Petersburg, Russia. The OSL cDOM protocol (Heim and Roessler, 2016) prescribes 3 Absorbance (A) measurements per sample from UV to 750 nm against ultra-pure water. The absorption coefficient, a, is calculated by a = 2.303A/L, where L is the pathlength of the cuvette [m], and the factor 2.303 converts log10 to loge. The output of the calculation is a continuous spectrum of a. The cDOM a spectra are used to determine the exponential slope value for specific wavelength ranges, S by fitting the data between min and max wavelength to an exponential function. We provide cDOM absorption coefficients for the wavelengths 254, 260, 350, 375, 400, 412, 440, 443 nm [1/m] and Slope values for three different UV, VIS, wavelength ranges: 275 to 295 nm, 350 to 400 nm, 300 to 500 nm [1/m]. All data were carried out by scientists from Arctic and Antarctic Research Institute and Saint Petersburg State University of Russia during "Yamal-Arctic" expeditions in 2012-2013, RFBR project No 14-04-10065 in 2014, No 14-05-00787 in 2016.