982 resultados para Production cross sections
Resumo:
Later conferences issued under title: Conference on Neutron Cross Sections and Technology.
Resumo:
Includes index.
Resumo:
"MAy 14, 1964"--page 7.
Resumo:
Includes indexes.
Resumo:
Cover title: Peaceful uses of atomic energy.
Resumo:
Includes bibliographical references (p. 43-68).
Resumo:
Ink on linen; four cross-sections showing grades for sections of estate, with elevations; sketches depict trees, pools and residence; number "4" in lower right; signed. 89x59 cm. No scale. [from photographic copy by Lance Burgharrdt]
Resumo:
QCD predicts Color Transparency (CT), which refers to nuclear medium becoming transparent to a small color neutral object produced in high momentum transfer reactions, due to reduced strong interaction. Despite several studies at BNL, SLAC, FNAL, DESY and Jefferson Lab, a definitive signal for CT still remains elusive. In this dissertation, we present the results of a new study at Jefferson Lab motivated by theoretical calculations that suggest fully exclusive measurement of coherent rho meson electroproduction off the deuteron is a favorable channel for studying CT. Vector meson production has a large cross section at high energies, and the deuteron is the best understood and simplest nuclear system. Exclusivity allows the production and propagation to be controlled separately by controlling Q 2, lf (formation length), lc (coherence length) and t. This control is important as the rapid expansion of small objects increases their interaction probability and masks CT. The CT signal is investigated in a ratio of cross sections at high t (where re-scattering is significant) to low t (where single nucleon reactions dominate). The results are presented over a Q2 range of 1 to 3 GeV2 based on the data taken with beam energy of 6 GeV.
Resumo:
We have obtained total and differential cross sections for the strangeness changing charged current weak reaction ν L + p → Λ(Σ0) + L+ using standard dipole form factors, where L stands for an electron, muon, or tau lepton, and L + stands for an positron, anti-muon or anti-tau lepton. We calculated these reactions from near threshold few hundred MeV to 8 GeV of incoming neutrino energy and obtained the contributions of the various form factors to the total and differential cross sections. We did this in support of possible experiments which might be carried out by the MINERνA collaboration at Fermilab. The calculation is phenomenologically based and makes use of SU(3) relations to obtain the standard vector current form factors and data from Λ beta decay to obtain the axial current form factor. We also made estimates for the contributions of the pseudoscalar form factor and for the F E and FS form factors to the total and differential cross sections. We discuss our results and consider under what circumstances we might extract the various form factors. In particular we wish to test the SU(3) assumptions made in determining all the form factors over a range of q2 values. Recently new form factors were obtained from recoil proton measurements in electron-proton electromagnetic scattering at Jefferson Lab. We thus calculated the contributions of the individual form factors to the total and differential cross sections for this new set of form factors. We found that the differential and total cross sections for Λ production change only slightly between the two sets of form factors but that the differential and total cross sections change substantially for Σ 0 production. We discuss the possibility of distinguishing between the two cases for the experiments planned by the MINERνA Collaboration. We also undertook the calculation for the inverse reaction e − + p → Λ + νe for a polarized outgoing Λ which might be performed at Jefferson Lab, and provided additional analysis of the contributions of the individual form factors to the differential cross sections for this case. ^
Resumo:
The research presented in this dissertation investigated selected processes involving baryons and nuclei in hard scattering reactions. These processes are characterized by the production of particles with large energies and transverse momenta. Through these processes, this work explored both, the constituent (quark) structure of baryons (specifically nucleons and Δ-Isobars), and the mechanisms through which the interactions between these constituents ultimately control the selected reactions. The first of such reactions is the hard nucleon-nucleon elastic scattering, which was studied here considering the quark exchange between the nucleons to be the dominant mechanism of interaction in the constituent picture. In particular, it was found that an angular asymmetry exhibited by proton-neutron elastic scattering data is explained within this framework if a quark-diquark picture dominates the nucleon’s structure instead of a more traditional SU(6) three quarks picture. The latter yields an asymmetry around 90o center of mass scattering with a sign opposite to what is experimentally observed. The second process is the hard breakup by a photon of a nucleon-nucleon system in light nuclei. Proton-proton (pp) and proton-neutron (pn) breakup in 3He, and ΔΔ-isobars production in deuteron breakup were analyzed in the hard rescattering model (HRM), which in conjunction with the quark interchange mechanism provides a Quantum Chromodynamics (QCD) description of the reaction. Through the HRM, cross sections for both channels in 3He photodisintegration were computed without the need of a fitting parameter. The results presented here for pp breakup show excellent agreement with recent experimental data. In ΔΔ-isobars production in deuteron breakup, HRM angular distributions for the two ΔΔ channels were compared to the pn channel and to each other. An important prediction fromthis study is that the Δ++Δ- channel consistently dominates Δ+Δ0, which is in contrast with models that unlike the HRM consider a ΔΔ system in the initial state of the interaction. For such models both channels should have the same strength. These results are important in developing a QCD description of the atomic nucleus.
Resumo:
A high resolution study of the H(e,e'K+)Λ,Σ 0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c) 2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (&thetas;CM∼6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and &thetas;CM and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ 0/Λ production ratio were performed at &thetas; CM∼6°, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ 0/Λ production were binned in Q2, W and &thetas;CM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.
Resumo:
The CLAS Collaboration is using the p(e, e&feet; K+ p)π- reaction to perform a measurement of the induced polarization of the electroproduced Λ(1116). The parity-violating weak decay of the Λ into pπ- (64%) allows extraction of the recoil polarization of the Λ. The present study uses the CEBAF Large Acceptance Spectrometer (CLAS) to detect the scattered electron, the kaon, and the decay proton. CLAS allows for a large kinematic acceptance in Q2 (0.8 ≤ Q2 ≤ 3.5 GeV2 ), W (1.6 ≤ W ≤ 3.0 GeV), as well as the kaon scattering angle. In this experiment a 5.499 GeV electron beam was incident upon an unpolarized liquid-hydrogen target. The goal is to map out the kinematic dependencies for this polarization observable to provide new constraints for theoretical models of the electromagnetic production of kaon-hyperon final states. Along with previously published photo- and electroproduction cross sections and polarization observables from CLAS, SAPHIR, and GRAAL, these data are needed in a coupled-channel analysis to identify previously unobserved s-channel resonances.^
Resumo:
The two-photon exchange phenomenon is believed to be responsible for the discrepancy observed between the ratio of proton electric and magnetic form factors, measured by the Rosenbluth and polarization transfer methods. This disagreement is about a factor of three at Q 2 of 5.6 GeV2. The precise knowledge of the proton form factors is of critical importance in understanding the structure of this nucleon. The theoretical models that estimate the size of the two-photon exchange (TPE) radiative correction are poorly constrained. This factor was found to be directly measurable by taking the ratio of the electron-proton and positron-proton elastic scattering cross sections, as the TPE effect changes sign with respect to the charge of the incident particle. A test run of a modified beamline has been conducted with the CEBAF Large Acceptance Spectrometer (CLAS) at Thomas Jefferson National Accelerator Facility. This test run demonstrated the feasibility of producing a mixed electron/positron beam of good quality. Extensive simulations performed prior to the run were used to reduce the background rate that limits the production luminosity. A 3.3 GeV primary electron beam was used that resulted in an average secondary lepton beam of 1 GeV. As a result, the elastic scattering data of both lepton types were obtained at scattering angles up to 40 degrees for Q2 up to 1.5 GeV2. The cross section ratio displayed an &epsis; dependence that was Q2 dependent at smaller Q2 limits. The magnitude of the average ratio as a function of &epsis; was consistent with the previous measurements, and the elastic (Blunden) model to within the experimental uncertainties. Ultimately, higher luminosity is needed to extend the data range to lower &epsis; where the TPE effect is predicted to be largest.
Resumo:
The parity violating weak decay of hyperons offers a valuable means of measuring their polarization, providing insight into the production of strange quarks and the matter they compose. Jefferson Lab's CLAS collaboration has utilized this property of hyperons, publishing the most precise polarization measurements for the Λ and Σ in both photoproduction and electroproduction to date. In contrast, cascades, which contain two strange quarks, can only be produced through indirect processes and as a result, exhibit low cross sections thus remaining experimentally elusive.^ At present, there are two aspects in cascade physics where progress has been minimal: characterizing their production mechanism, which lacks theoretical and experimental developments, and observation of the numerous excited cascade resonances that are required to exist by flavor SU(3) F symmetry. However, CLAS data were collected in 2008 with a luminosity of 68 pb−1 using a circularly polarized photon beam with energies up to 5.45 GeV, incident on a liquid hydrogen target. This dataset is, at present, the world's largest for meson photoproduction in its energy range and provides a unique opportunity to study cascade physics with polarization measurements.^ The current analysis explores hyperon production through the γ p → K+K +Ξ− reaction by providing the first ever determination of spin observables P, Cx and Cz for the cascade. Three of our primary goals are to test the only cascade photoproduction model in existence, examine the underlying processes that give rise to hyperon polarization, and to stimulate future theoretical developments while providing constraints for their parameters. Our research is part of a broader program to understand the production of strange quarks and hadrons with strangeness. The remainder of this document discusses the motivation behind such research, the method of data collection, details of their analysis, and the significance of our results.^
Resumo:
A high resolution study of the H(e,e'K+)Λ,Σ0 reaction was performed at Hall A, TJNAF as part of the hypernuclear experiment E94-107. One important ingredient to the measurement of the hypernuclear cross section is the elementary cross section for production of hyperons, Λ and Σ0. This reaction was studied using a hydrogen (i.e. a proton) target. Data were taken at very low Q2 (∼0.07 (GeV/c)2) and W∼2.2 GeV. Kaons were detected along the direction of q, the momentum transferred by the incident electron (θCM~6°). In addition, there are few data available regarding electroproduction of hyperons at low Q2 and θCM, and the available theoretical models differ significantly in this kinematical region of W. The measurement of the elementary cross section was performed by scaling the Monte Carlo cross section (MCEEP) with the experimental-to-simulated yield ratio. The Monte Carlo cross section includes an experimental fit and extrapolation from the existing data for electroproduction of hyperons. Moreover, the estimated transverse component of the electroproduction cross section of H(e,e'K+)Λ was compared to the different predictions of the theoretical models and exisiting data curves for photoproductions of hyperons. None of the models fully describe the cross-section results over the entire angular range. Furthermore, measurements of the Σ0/Λ production ratio were performed at θCM, where data are not available. Finally, data for the measurements of the differential cross sections and the Σ0/Λ production were binned in Q2, W and θCM to understand the dependence on these variables. These results are not only a fundamental contribution to the hypernuclear spectroscopy studies but also an important experimental measurement to constrain existing theoretical models for the elementary reaction.