873 resultados para Product cost model
Resumo:
The paper presents the techno-economic modelling of CO2 capture process in coal-fired power plants. An overall model is being developed to compare carbon capture and sequestration options at locations within the UK, and for studies of the sensitivity of the cost of disposal to changes in the major parameters of the most promising solutions identified. Technological options of CO2 capture have been studied and cost estimation relationships (CERs) for the chosen options calculated. Created models are related to the capital, operation and maintenance cost. A total annualised cost of plant electricity output and amount of CO2 avoided have been developed. The influence of interest rates and plant life has been analysed as well. The CERs are included as an integral part of the overall model.
Resumo:
A model for comparing the inventory costs of purchasing under the economic order quantity (EOQ) system and the just-in-time (JIT) order purchasing system in existing literature concluded that JIT purchasing was virtually always the preferable inventory ordering system especially at high level of annual demand. By expanding the classical EOQ model, this paper shows that it is possible for the EOQ system to be more cost effective than the JIT system once the inventory demand approaches the EOQ-JIT cost indifference point. The case study conducted in the ready-mixed concrete industry in Singapore supported this proposition.
Resumo:
OBJECTIVES: To determine the cost-effectiveness of influenza vaccination in people aged 65-74 years in the absence of co-morbidity. DESIGN: Primary research: randomised controlled trial. SETTING: Primary care. PARTICIPANTS: People without risk factors for influenza or contraindications to vaccination were identified from 20 general practitioner (GP) practices in Liverpool in September 1999 and invited to participate in the study. There were 5875/9727 (60.4%) people aged 65-74 years identified as potentially eligible and, of these, 729 (12%) were randomised. INTERVENTION: Participants were randomised to receive either influenza vaccine or placebo (ratio 3:1), with all individuals receiving pneumococcal vaccine unless administered in the previous 10 years. Of the 729 people randomised, 552 received vaccine and 177 received placebo; 726 individuals were administered pneumococcal vaccine. MAIN OUTCOME MEASURES AND METHODOLOGY OF ECONOMIC EVALUATION: GP attendance with influenza-like illness (ILI) or pneumonia (primary outcome measure); or any respiratory symptoms; hospitalisation with a respiratory illness; death; participant self-reported ILI; quality of life (QoL) measures at 2, 4 and 6 months post-study vaccination; adverse reactions 3 days after vaccination. A cost-effectiveness analysis was undertaken to identify the incremental cost associated with the avoidance of episodes of influenza in the vaccination population and an impact model was used to extrapolate the cost-effectiveness results obtained from the trial to assess their generalisability throughout the NHS. RESULTS: In England and Wales, weekly consultations for influenza and ILI remained at baseline levels (less than 50 per 100,000 population) until week 50/1999 and then increased rapidly, peaking during week 2/2000 with a rate of 231/100,000. This rate fell within the range of 'higher than expected seasonal activity' of 200-400/100,000. Rates then quickly declined, returning to baseline levels by week 5/2000. The predominant circulating strain during this period was influenza A (H3N2). Five (0.9%) people in the vaccine group were diagnosed by their GP with an ILI compared to two (1.1%) in the placebo group [relative risk (RR), 0.8; 95% confidence interval (CI) = 0.16 to 4.1]. No participants were diagnosed with pneumonia by their GP and there were no hospitalisations for respiratory illness in either group. Significantly fewer vaccinated individuals self-reported a single ILI (4.6% vs 8.9%, RR, 0.51; 95% CI for RR, 0.28 to 0.96). There was no significant difference in any of the QoL measurements over time between the two groups. Reported systemic side-effects showed no significant differences between groups. Local side-effects occurred with a significantly increased incidence in the vaccine group (11.3% vs 5.1%, p = 0.02). Each GP consultation avoided by vaccination was estimated from trial data to generate a net NHS cost of 174 pounds. CONCLUSIONS: No difference was seen between groups for the primary outcome measure, although the trial was underpowered to demonstrate a true difference. Vaccination had no significant effect on any of the QoL measures used, although vaccinated individuals were less likely to self-report ILI. The analysis did not suggest that influenza vaccination in healthy people aged 65-74 years would lead to lower NHS costs. Future research should look at ways to maximise vaccine uptake in people at greatest risk from influenza and also the level of vaccine protection afforded to people from different age and socio-economic populations.
Resumo:
In this paper, a fuzzy Markov random field (FMRF) model is used to segment land-objects into free, grass, building, and road regions by fusing remotely, sensed LIDAR data and co-registered color bands, i.e. scanned aerial color (RGB) photo and near infra-red (NIR) photo. An FMRF model is defined as a Markov random field (MRF) model in a fuzzy domain. Three optimization algorithms in the FMRF model, i.e. Lagrange multiplier (LM), iterated conditional mode (ICM), and simulated annealing (SA), are compared with respect to the computational cost and segmentation accuracy. The results have shown that the FMRF model-based ICM algorithm balances the computational cost and segmentation accuracy in land-cover segmentation from LIDAR data and co-registered bands.
Resumo:
Several pixel-based people counting methods have been developed over the years. Among these the product of scale-weighted pixel sums and a linear correlation coefficient is a popular people counting approach. However most approaches have paid little attention to resolving the true background and instead take all foreground pixels into account. With large crowds moving at varying speeds and with the presence of other moving objects such as vehicles this approach is prone to problems. In this paper we present a method which concentrates on determining the true-foreground, i.e. human-image pixels only. To do this we have proposed, implemented and comparatively evaluated a human detection layer to make people counting more robust in the presence of noise and lack of empty background sequences. We show the effect of combining human detection with a pixel-map based algorithm to i) count only human-classified pixels and ii) prevent foreground pixels belonging to humans from being absorbed into the background model. We evaluate the performance of this approach on the PETS 2009 dataset using various configurations of the proposed methods. Our evaluation demonstrates that the basic benchmark method we implemented can achieve an accuracy of up to 87% on sequence ¿S1.L1 13-57 View 001¿ and our proposed approach can achieve up to 82% on sequence ¿S1.L3 14-33 View 001¿ where the crowd stops and the benchmark accuracy falls to 64%.
Resumo:
In this work, a fault-tolerant control scheme is applied to a air handling unit of a heating, ventilation and air-conditioning system. Using the multiple-model approach it is possible to identify faults and to control the system under faulty and normal conditions in an effective way. Using well known techniques to model and control the process, this work focuses on the importance of the cost function in the fault detection and its influence on the reconfigurable controller. Experimental results show how the control of the terminal unit is affected in the presence a fault, and how the recuperation and reconfiguration of the control action is able to deal with the effects of faults.
An empirical study of process-related attributes in segmented software cost-estimation relationships
Resumo:
Parametric software effort estimation models consisting on a single mathematical relationship suffer from poor adjustment and predictive characteristics in cases in which the historical database considered contains data coming from projects of a heterogeneous nature. The segmentation of the input domain according to clusters obtained from the database of historical projects serves as a tool for more realistic models that use several local estimation relationships. Nonetheless, it may be hypothesized that using clustering algorithms without previous consideration of the influence of well-known project attributes misses the opportunity to obtain more realistic segments. In this paper, we describe the results of an empirical study using the ISBSG-8 database and the EM clustering algorithm that studies the influence of the consideration of two process-related attributes as drivers of the clustering process: the use of engineering methodologies and the use of CASE tools. The results provide evidence that such consideration conditions significantly the final model obtained, even though the resulting predictive quality is of a similar magnitude.
Resumo:
An efficient model identification algorithm for a large class of linear-in-the-parameters models is introduced that simultaneously optimises the model approximation ability, sparsity and robustness. The derived model parameters in each forward regression step are initially estimated via the orthogonal least squares (OLS), followed by being tuned with a new gradient-descent learning algorithm based on the basis pursuit that minimises the l(1) norm of the parameter estimate vector. The model subset selection cost function includes a D-optimality design criterion that maximises the determinant of the design matrix of the subset to ensure model robustness and to enable the model selection procedure to automatically terminate at a sparse model. The proposed approach is based on the forward OLS algorithm using the modified Gram-Schmidt procedure. Both the parameter tuning procedure, based on basis pursuit, and the model selection criterion, based on the D-optimality that is effective in ensuring model robustness, are integrated with the forward regression. As a consequence the inherent computational efficiency associated with the conventional forward OLS approach is maintained in the proposed algorithm. Examples demonstrate the effectiveness of the new approach.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
An automatic nonlinear predictive model-construction algorithm is introduced based on forward regression and the predicted-residual-sums-of-squares (PRESS) statistic. The proposed algorithm is based on the fundamental concept of evaluating a model's generalisation capability through crossvalidation. This is achieved by using the PRESS statistic as a cost function to optimise model structure. In particular, the proposed algorithm is developed with the aim of achieving computational efficiency, such that the computational effort, which would usually be extensive in the computation of the PRESS statistic, is reduced or minimised. The computation of PRESS is simplified by avoiding a matrix inversion through the use of the orthogonalisation procedure inherent in forward regression, and is further reduced significantly by the introduction of a forward-recursive formula. Based on the properties of the PRESS statistic, the proposed algorithm can achieve a fully automated procedure without resort to any other validation data set for iterative model evaluation. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
While search is normally modelled by economists purely in terms of decisions over making observations, this paper models it as a process in which information is gained through feedback from innovatory product launches. The information gained can then be used to decide whether to exercise real options. In the model the initial decisions involve a product design and the scale of production capacity. There are then real options to change these factors based on what is learned. The case of launching product variants in parallel is also considered. Under ‘true’ uncertainty, the model can be seen in terms of heuristic decision-making based on subjective beliefs with limited foresight. Search costs, the values of the real options, beliefs, and the cost of capital are all shown to be significant in determining the search path.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the subset selection cost function includes an A-optimality design criterion to minimize the variance of the parameter estimates that ensures the adequacy and parsimony of the final model. An illustrative example is included to demonstrate the effectiveness of the new approach.
Resumo:
Real estate development appraisal is a quantification of future expectations. The appraisal model relies upon the valuer/developer having an understanding of the future in terms of the future marketability of the completed development and the future cost of development. In some cases the developer has some degree of control over the possible variation in the variables, as with the cost of construction through the choice of specification. However, other variables, such as the sale price of the final product, are totally dependent upon the vagaries of the market at the completion date. To try to address the risk of a different outcome to the one expected (modelled) the developer will often carry out a sensitivity analysis on the development. However, traditional sensitivity analysis has generally only looked at the best and worst scenarios and has focused on the anticipated or expected outcomes. This does not take into account uncertainty and the range of outcomes that can happen. A fuller analysis should include examination of the uncertainties in each of the components of the appraisal and account for the appropriate distributions of the variables. Similarly, as many of the variables in the model are not independent, the variables need to be correlated. This requires a standardised approach and we suggest that the use of a generic forecasting software package, in this case Crystal Ball, allows the analyst to work with an existing development appraisal model set up in Excel (or other spreadsheet) and to work with a predetermined set of probability distributions. Without a full knowledge of risk, developers are unable to determine the anticipated level of return that should be sought to compensate for the risk. This model allows the user a better understanding of the possible outcomes for the development. Ultimately the final decision will be made relative to current expectations and current business constraints, but by assessing the upside and downside risks more appropriately, the decision maker should be better placed to make a more informed and “better”.