853 resultados para Probabilistic decision process model
Resumo:
While riparian vegetation can play a major role in protecting land, water and natural habitat in catchments, there are high costs associated with tree planting and establishment and in diverting land from cropping. The distribution of costs and benefits of riparian revegetation creates conflicts in the objectives of various stakeholder groups. Multicriteria analysis provides an appropriate tool to evaluate alternative riparian revegetation options, and to accommodate the conflicting views of various stakeholder groups. This paper discusses an application of multicriteria analysis in an evaluation of riparian revegetation policy options for Scheu Creek, a small sub-catchment in the Johnstone River catchment in north Queensland, Australia. Clear differences are found in the rankings of revegetation options for different stakeholder groups with respect to environmental, social and economic impacts. Implementation of a revegetation option will involve considerable cost for landholders for the benefits of society. Queensland legislation does not provide a means to require farmers to implement riparian revegetation, hence the need for subsidies, tau incentives and moral suasion. (C) 2001 Academic Press.
Resumo:
The purpose of this study was threefold: first, the study was designed to illustrate the use of data and information collected in food safety surveys in a quantitative risk assessment. In this case, the focus was on the food service industry; however, similar data from other parts of the food chain could be similarly incorporated. The second objective was to quantitatively describe and better understand the role that the food service industry plays in the safety of food. The third objective was to illustrate the additional decision-making information that is available when uncertainty and variability are incorporated into the modelling of systems. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The Agricultural Production Systems Simulator (APSIM) is a modular modelling framework that has been developed by the Agricultural Production Systems Research Unit in Australia. APSIM was developed to simulate biophysical process in farming systems, in particular where there is interest in the economic and ecological outcomes of management practice in the face of climatic risk. The paper outlines APSIM's structure and provides details of the concepts behind the different plant, soil and management modules. These modules include a diverse range of crops, pastures and trees, soil processes including water balance, N and P transformations, soil pH, erosion and a full range of management controls. Reports of APSIM testing in a diverse range of systems and environments are summarised. An example of model performance in a long-term cropping systems trial is provided. APSIM has been used in a broad range of applications, including support for on-farm decision making, farming systems design for production or resource management objectives, assessment of the value of seasonal climate forecasting, analysis of supply chain issues in agribusiness activities, development of waste management guidelines, risk assessment for government policy making and as a guide to research and education activity. An extensive citation list for these model testing and application studies is provided. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.
Resumo:
Nowadays, the Portuguese insurance industry operates in a market with a much more aggressive structure than a few decades ago. Markets and the economy have become globalised since the last decade of the 20th century. Market forces have gradually shifted – power is now mainly on the demand side. In order to meet the new requirements, the insurance industry must develop a strong strategic ability to respond to constant changes of the new international economic order.One of the basic aspects of this strategic development will focus on the ability to predict the future. We introduce the subject by briefly describing the sector, its organisational structure in the Portuguese market, and challenges arising from the development of the European Union. We then analyse the economic and financial structure of the sector. From this point of view, we aim at the possibility of designing models that could explain the demand for insurance, claims and technical reserves evolution. Such models, (even if based on the past), would resolve, at least partly, one of the greatest difficulties experienced by insurance companies when estimating the budget. Thus, we examine the existence of variables that explain the previous points, which are capable of forming a basis for designing models that are simple but efficient, and can be used for strategic planning.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
Introduction / Aims: Adopting the important decisions represents a specific task of the manager. An efficient manager takes these decisions during a sistematic process with well-defined elements, each with a precise order. In the pharmaceutical practice and business, in the supply process of the pharmacies, there are situations when the medicine distributors offer a certain discount, but require payment in a shorter period of time. In these cases, the analysis of the offer can be made with the help of the decision tree method, which permits identifying the decision offering the best possible result in a given situation. The aims of the research have been the analysis of the product offers of many different suppliers and the establishing of the most advantageous ways of pharmacy supplying. Material / Methods: There have been studied the general product offers of the following medical stores: A&G Med, Farmanord, Farmexim, Mediplus, Montero and Relad. In the case of medicine offers including a discount, the decision tree method has been applied in order to select the most advantageous offers. The Decision Tree is a management method used in taking the right decisions and it is generally used when one needs to evaluate the decisions that involve a series of stages. The tree diagram is used in order to look for the most efficient means to attain a specific goal. The decision trees are the most probabilistic methods, useful when adopting risk taking decisions. Results: The results of the analysis on the tree diagrams have indicated the fact that purchasing medicines with discount (1%, 10%, 15%) and payment in a shorter time interval (120 days) is more profitable than purchasing without a discount and payment in a longer time interval (160 days). Discussion / Conclusion: Depending on the results of the tree diagram analysis, the pharmacies would purchase from the selected suppliers. The research has shown that the decision tree method represents a valuable work instrument in choosing the best ways for supplying pharmacies and it is very useful to the specialists from the pharmaceutical field, pharmaceutical management, to medicine suppliers, pharmacy practitioners from the community pharmacies and especially to pharmacy managers, chief – pharmacists.
Resumo:
In this paper is proposed the integration of personality, emotion and mood aspects for a group of participants in a decision-making negotiation process. The aim is to simulate the participant behavior in that scenario. The personality is modeled through the OCEAN five-factor model of personality (Openness, Conscientiousness, Extraversion, Agreeableness and Negative emotionality). The emotion model applied to the participants is the OCC (Ortony, Clore and Collins) that defines several criteria representing the human emotional structure. In order to integrate personality and emotion is used the pleasure-arousal-dominance (PAD) model of mood.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.
Resumo:
This paper aims to present a multi-agent model for a simulation, whose goal is to help one specific participant of multi-criteria group decision making process.This model has five main intervenient types: the human participant, who is using the simulation and argumentation support system; the participant agents, one associated to the human participant and the others simulating the others human members of the decision meeting group; the directory agent; the proposal agents, representing the different alternatives for a decision (the alternatives are evaluated based on criteria); and the voting agent responsiblefor all voting machanisms.At this stage it is proposed a two phse algorithm. In the first phase each participantagent makes his own evaluation of the proposals under discussion, and the voting agent proposes a simulation of a voting process.In the second phase, after the dissemination of the voting results,each one ofthe partcipan agents will argue to convince the others to choose one of the possible alternatives. The arguments used to convince a specific participant are dependent on agent knowledge about that participant. This two-phase algorithm is applied iteratively.
Resumo:
Knowledge is central to the modern economy and society. Indeed, the knowledge society has transformed the concept of knowledge and is more and more aware of the need to overcome the lack of knowledge when has to make options or address its problems and dilemmas. One’s knowledge is less based on exact facts and more on hypotheses, perceptions or indications. Even when we use new computational artefacts and novel methodologies for problem solving, like the use of Group Decision Support Systems (GDSSs), the question of incomplete information is in most of the situations marginalized. On the other hand, common sense tells us that when a decision is made it is impossible to have a perception of all the information involved and the nature of its intrinsic quality. Therefore, something has to be made in terms of the information available and the process of its evaluation. It is under this framework that a Multi-valued Extended Logic Programming language will be used for knowledge representation and reasoning, leading to a model that embodies the Quality-of-Information (QoI) and its quantification, along the several stages of the decision-making process. In this way, it is possible to provide a measure of the value of the QoI that supports the decision itself. This model will be here presented in the context of a GDSS for VirtualECare, a system aimed at sustaining online healthcare services.
Resumo:
The problem of selecting suppliers/partners is a crucial and important part in the process of decision making for companies that intend to perform competitively in their area of activity. The selection of supplier/partner is a time and resource-consuming task that involves data collection and a careful analysis of the factors that can positively or negatively influence the choice. Nevertheless it is a critical process that affects significantly the operational performance of each company. In this work, there were identified five broad selection criteria: Quality, Financial, Synergies, Cost, and Production System. Within these criteria, it was also included five sub-criteria. After the identification criteria, a survey was elaborated and companies were contacted in order to understand which factors have more weight in their decisions to choose the partners. Interpreted the results and processed the data, it was adopted a model of linear weighting to reflect the importance of each factor. The model has a hierarchical structure and can be applied with the Analytic Hierarchy Process (AHP) method or Value Analysis. The goal of the paper it's to supply a selection reference model that can represent an orientation/pattern for a decision making on the suppliers/partners selection process
Resumo:
In this talk, we discuss a scheduling problem that originated at TAP - Maintenance & Engineering - the maintenance, repair and overhaul organization of Portugal’s leading airline. In the repair process of aircrafts’ engines, the operations to be scheduled may be executed on a certain workstation by any processor of a given set, and the objective is to minimize the total weighted tardiness. A mixed integer linear programming formulation, based on the flexible job shop scheduling, is presented here, along with computational experiment on a real instance, provided by TAP-ME, from a regular working week. The model was also tested using benchmarking instances available in literature.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer Science