824 resultados para Power system planning
Resumo:
The consumption of energy on the planet is currently based on fossil fuels. They are responsible for adverse effects on the environment. Renewables propose solutions for this scenario, but must face issues related to the capacity of the power supply. Wind energy offshore emerging as a promising alternative. The speed and stability are greater winds over oceans, but the variability of these may cause inconvenience to the generation of electric power fluctuations. To reduce this, a combination of wind farms geographically distributed was proposed. The greater the distance between them, the lower the correlation between the wind velocity, increasing the likelihood that together achieve more stable power system with less fluctuations in power generation. The efficient use of production capacity of the wind park however, depends on their distribution in marine environments. The objective of this research was to analyze the optimal allocation of wind farms offshore on the east coast of the U.S. by Modern Portfolio Theory. The Modern Portfolio Theory was used so that the process of building portfolios of wind energy offshore contemplate the particularity of intermittency of wind, through calculations of return and risk of the production of wind farms. The research was conducted with 25.934 observations of energy produced by wind farms 11 hypothetical offshore, from the installation of 01 simulated ocean turbine with a capacity of 5 MW. The data show hourly time resolution and covers the period between January 1, 1998 until December 31, 2002. Through the Matlab R software, six were calculated minimum variance portfolios, each for a period of time distinct. Given the inequality of the variability of wind over time, set up four strategies rebalancing to evaluate the performance of the related portfolios, which enabled us to identify the most beneficial to the stability of the wind energy production offshore. The results showed that the production of wind energy for 1998, 1999, 2000 and 2001 should be considered by the portfolio weights calculated for the same periods, respectively. Energy data for 2002 should use the weights derived from the portfolio calculated in the previous time period. Finally, the production of wind energy in the period 1998-2002 should also be weighted by 1/11. It follows therefore that the portfolios found failed to show reduced levels of variability when compared to the individual production of wind farms hypothetical offshore
Resumo:
Although the records indicate the involvement of the City Christmas in the feeding system HiperDia, a survey conducted by the Health Ministry in 2004 found that the number of entries made in Natal was well below estimate. In order to understand the functioning of HiperDia, we performed this study to analyze the actions taken by the professionals involved in power system HiperDia in Natal / RN. The research has developed into a quantitative perspective, with the design of exploratory case study conducted in the health services that integrate the various levels of the organization who are directly involved with the process of system power HiperDia in Natal / RN , represented here by SMS, health districts and the Family Health Units in the period from August to October 2008.Study participants were 110 professionals, including nurses, physicians, operators, administrator and a coordinator. The survey results showed that feeding HiperDia in Natal was maintained mainly by health professionals and operators. Activities include carrying out the state registration, monitoring, and updating of data transfer routines. They report that the difficulties in the process of feeding data are related to the work of teams and / or lack of structure of the Program of Hypertension and Diabetes (HA and DM), the discontinuity of federal investments in improving the HiperDia and lack of training. We can see then that the process of feeding system on Christmas HiperDia therefore is developing the three levels (SMS, districts and health units), however is not matching the expectations established by MS, considering that the gaps the flow of information are undermining the end result of this process
Resumo:
The increasing competitiveness of the construction industry, set in an economic environment in which the offer is now greater than the demand , causes the prices of many products and services, are strongly influenced by the processes of production and the final consumer. Thus, to become more competitive in the market and construction companies are seeking new alternatives to reduce and control costs, production processes and tools that allow for close monitoring of the construction schedule, with the consequent compliance deadline with the client. Based on this scenario, the creation of control tools, service management and planning work emerges as an investment opportunity and an area that can promote great benefits to construction companies. The goal of this work is to present a system of planning, service management and costs control that through worksheets provide information relating to the production phase of the work, allowing the visualization of possible irregularities in the planning and cost of the enterprise, enabling the company to take steps to achieve the goals of the enterprise in question, and correct them when necessary. The developed system has been used in a piece of real estate in Rio Grande do Norte, and the results showed that its use together allowed the construction company to accompany their results and take corrective and preventive actions during the production process, efficiently and effective
Resumo:
This work presents a study of the ambient management in urban centers, considering the ambient perception as element necessary to develop in the population the conscience of the necessity to preserve the environment. For this, the attitudes and behaviors of the community, represented for students of an Institution had been evaluated, so that strategies and actions are traced that come to minimize the ambient degradation and to provide an aggregate sustainable development to the economic development. The objective of this research consists of studying the problematic one of the ambient management in urban centers under the point of view of the awareness, of the ambient perception and of the participation of the population, this because the ambient questions are inserted in the aspects that involve the practical life and the daily one, for what becomes excellent to understand that the environment is a right of all, therefore, must be preserved. The methodology used in this work constitutes in the application of a questionnaire with scales of the type likert contends variables that compose the acts and mannering aspects, beyond a partner-demographic scale. The Chi-square method was used in the analysis statistics de Pearson to verify the dependence of the associations between the partner-demographic 0 variable and the acts and mannering variables. The results point that the academic environment is opportune to deal with the subject, in view of that the ambient preservation goes for all the contents, and that the pupils of today will be able, in the future, in its areas of performance to plan action to safeguard the sustainable development. One concludes that the strategies to manage the environment pass for the awareness of the citizen, therefore when it is educated its attitudes will be more responsible, a time that the ambient concern will be present in its day-by-day. Therefore, the Public Power when planning programs of ambient preservation that comes to promote changes of habits of the population, such as: management of the solid residues generated by the population, recycling, programs of selective collections, ambient education, etc. the local community for the success of its actions will have to be involved
Resumo:
This study presents a description of the development model of a representation of simplified grid applied in hybrid load flow for calculation of the voltage variations in a steady-state caused by the wind farm on power system. Also, it proposes an optimal load-flow able to control power factor on connection bar and to minimize the loss. The analysis process on system, led by the wind producer, it has as base given technician supplied by the grid. So, the propose model to the simplification of the grid that allows the necessity of some knowledge only about the data referring the internal network, that is, the part of the network that interests in the analysis. In this way, it is intended to supply forms for the auxiliary in the systematization of the relations between the sector agents. The model for simplified network proposed identifies the internal network, external network and the buses of boulders from a study of vulnerability of the network, attributing them floating liquid powers attributing slack models. It was opted to apply the presented model in Newton-Raphson and a hybrid load flow, composed by The Gauss-Seidel method Zbarra and Summation Power. Finally, presents the results obtained to a developed computational environment of SCILAB and FORTRAN, with their respective analysis and conclusion, comparing them with the ANAREDE
Resumo:
Eventually, violations of voltage limits at buses or admissible loadings of transmission lines and/or power transformers may occur by the power system operation. If violations are detected in the supervision process, corrective measures may be carried out in order to eliminate them or to reduce their intensity. Loading restriction is an extreme solution and should only be adopted as the last control action. Previous researches have shown that it is possible to control constraints in electrical systems by changing the network topology, using the technique named Corrective Switching, which requires no additional costs. In previous works, the proposed calculations for verifying the ability of a switching variant in eliminating an overload in a specific branch were based on network reduction or heuristic analysis. The purpose of this work is to develop analytical derivation of linear equations to estimate current changes in a specific branch (due to switching measures) by means of few calculations. For bus-bar coupling, derivations will be based on short-circuit theory and Relief Function methodology. For bus-bar splitting, a Relief Function will be derived based on a technique of equivalent circuit. Although systems of linear equations are used to substantiate deductions, its formal solution for each variant, in real time does not become necessary. A priority list of promising variants is then assigned for final check by an exact load flow calculation and a transient analysis using ATP Alternative Transient Program. At last, results obtained by simulation in networks with different features will be presented
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS-APPC). In the VS-APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
The Methods for compensation of harmonic currents and voltages have been widely used since these methods allow to reduce to acceptable levels the harmonic distortion in the voltages or currents in a power system, and also compensate reactive. The reduction of harmonics and reactive contributes to the reduction of losses in transmission lines and electrical machinery, increasing the power factor, reduce the occurrence of overvoltage and overcurrent. The active power filter is the most efficient method for compensation of harmonic currents and voltages. The active power filter is necessary to use current and voltage controllers loop. Conventionally, the current and voltage control loop of active filter has been done by proportional controllers integrative. This work, investigated the use of a robust adaptive control technique on the shunt active power filter current and voltage control loop to increase robustness and improve the performance of active filter to compensate for harmonics. The proposed control scheme is based on a combination of techniques for adaptive control pole placement and variable structure. The advantages of the proposed method over conventional ones are: lower total harmonic distortion, more flexibility, adaptability and robustness to the system. Moreover, the proposed control scheme improves the performance and improves the transient of active filter. The validation of the proposed technique was verified initially by a simulation program implemented in C++ language and then experimental results were obtained using a prototype three-phase active filter of 1 kVA
Resumo:
Conventional control strategies used in shunt active power filters (SAPF) employs real-time instantaneous harmonic detection schemes which is usually implements with digital filters. This increase the number of current sensors on the filter structure which results in high costs. Furthermore, these detection schemes introduce time delays which can deteriorate the harmonic compensation performance. Differently from the conventional control schemes, this paper proposes a non-standard control strategy which indirectly regulates the phase currents of the power mains. The reference currents of system are generated by the dc-link voltage controller and is based on the active power balance of SAPF system. The reference currents are aligned to the phase angle of the power mains voltage vector which is obtained by using a dq phase locked loop (PLL) system. The current control strategy is implemented by an adaptive pole placement control strategy integrated to a variable structure control scheme (VS¡APPC). In the VS¡APPC, the internal model principle (IMP) of reference currents is used for achieving the zero steady state tracking error of the power system currents. This forces the phase current of the system mains to be sinusoidal with low harmonics content. Moreover, the current controllers are implemented on the stationary reference frame to avoid transformations to the mains voltage vector reference coordinates. This proposed current control strategy enhance the performance of SAPF with fast transient response and robustness to parametric uncertainties. Experimental results are showing for determining the effectiveness of SAPF proposed control system
Resumo:
This work presents a description of models development at DigSILENT PowerFactoryTM program for the transient stability study in power systems with wind turbine. The main goal is to make available means to use a dynamic simulation program in power systems, widely published, and utilize it as a tool that helps in programs results evaluations used for this intent. The process of simulations and analyses results starts after the models setting description phase. The results obtained by the DigSILENT PowerFactoryTM and ATP, program chosen to the validation also international recognized, are compared during this phase. The main tools and guide lines of PowerFactoryTM program use are presented here, directing these elements to the solution of the approached problem. For the simulation it is used a real system which it will be connected a wind farm. Two different technologies of wind turbines were implemented: doubly-fed induction generator with frequency converter, connecting the rotor to the stator and to the grid, and synchronous wind generator with frequency converter, interconnecting the generator to the grid. Besides presenting the basic conceptions of dynamic simulation, it is described the implemented control strategies and models of turbine and converters. The stability of the wind turbine interconnected to grid is analyzed in many operational conditions, resultant of diverse kinds of disturbances
Resumo:
The stability of synchronous generators connected to power grid has been the object of study and research for years. The interest in this matter is justified by the fact that much of the electricity produced worldwide is obtained with the use of synchronous generators. In this respect, studies have been proposed using conventional and unconventional control techniques such as fuzzy logic, neural networks, and adaptive controllers to increase the stabilitymargin of the systemduring sudden failures and transient disturbances. Thismaster thesis presents a robust unconventional control strategy for maintaining the stability of power systems and regulation of output voltage of synchronous generators connected to the grid. The proposed control strategy comprises the integration of a sliding surface with a linear controller. This control structure is designed to prevent the power system losing synchronism after a sudden failure and regulation of the terminal voltage of the generator after the fault. The feasibility of the proposed control strategy was experimentally tested in a salient pole synchronous generator of 5 kVA in a laboratory structure
Resumo:
The power system stabilizers are used to suppress low-frequency electromechanical oscillations and improve the synchronous generator stability limits. This master thesis proposes a wavelet-based power system stabilizer, composed of a new methodology for extraction and compensation of electromechanical oscillations in electrical power systems based on the scaling coefficient energy of the maximal overlap discrete wavelet transform in order to reduce the effects of delay and attenuation of conventional power system stabilizers. Moreover, the wavelet coefficient energy is used for electric oscillation detection and triggering the power system stabilizer only in fault situations. The performance of the proposed power system stabilizer was assessed with experimental results and comparison with the conventional power system stabilizer. Furthermore, the effects of the mother wavelet were also evaluated in this work
Resumo:
Currently, there are several power converter topologies applied to wind power generation. The converters allow the use of wind turbines operating at variable speed, enabling better use of wind forces. The high performance of the converters is being increasingly demanded, mainly because of the increase in the power generation capacity by wind turbines, which gave rise to various converter topologies, such as parallel or multilevel converters. The use of converters allow effective control of the power injected into the grid, either partially, for the case using partial converter, or total control for the case of using full converter. The back-to-back converter is one of the most used topologies in the market today, due to its simple structure, with few components, contributing to robust and reliable performance. In this work, is presented the implementation of a wind cogeneration system using a permanent magnet synchronous generator (PMSG) associated with a back-to-back power converter is proposed, in order to inject active power in an electric power system. The control strategy of the active power delivered to the grid by cogeneration is based on the philosophy of indirect control
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, a multi-objective approach for observing the performance of distribution systems with embedded generators in the steady state, based on heuristic and power system analysis, is proposed. The proposed hybrid performance index describes the quality of the operating state in each considered distribution network configuration. In order to represent the system state, the loss allocation in the distribution systems, based on the Z-bus loss allocation method and compensation-based power flow algorithm, is determined. Also, an investigation of the impact of the integration of embedded generators on the overall performance of the distribution systems in the steady state, is performed. Results obtained from several case studies are presented and discussed. Copyright (C) 2004 John Wiley Sons, Ltd.