915 resultados para Poultry Diets
Resumo:
Two in vitro experiments were conducted to analyse the effects of replacing dietary barley grain with wastes of tomato and cucumber fruits and a 1 : 1 tomato : cucumber mixture on rumen fermentation characteristics and microbial abundance. The control (CON) substrate contained 250 g/kg of barley grain on a dry matter (DM) basis, and another 15 substrates were formulated by replacing 50, 100, 150, 200 or 250 g of barley grain/kg with the same amount (DM basis) of tomato or cucumber fruits or 1 : 1 tomato : cucumber mixture. In Expt 1, all substrates were incubated in batch cultures with rumen micro-organisms from goats for 24 h. Increasing amounts of tomato, cucumber and the mixture of both fruits in the substrate increased final pH and gas production, without changes in final ammonia-nitrogen (NH3-N) concentrations, substrate degradability and total volatile fatty acid (VFA) production, indicating that there were no detrimental effects of any waste fruits on rumen fermentation. Therefore, in Expt 2 the substrates including 250 g of waste fruits (T250, C250 and M250 for tomato, cucumber and the mixture of both fruits, respectively) and the CON substrate were incubated in single-flow continuous-culture fermenters for 8 days. Total VFA production did not differ among substrates, but there were differences in VFA profile. Molar proportions of propionate, isobutyrate and isovalerate were lower and acetate : propionate ratio was greater for T250 compared with CON substrate. Fermentation of substrates containing cucumber (C250 and M250) resulted in lower proportions of acetate, isobutyrate and isovalerate and acetate : propionate ratio, but greater butyrate proportions than the CON substrate. Carbohydrate degradability and microbial N synthesis tended to be lower for substrates containing cucumber than for the CON substrate, but there were no differences between CON and T250 substrates. Abundance of total bacteria, Fibrobacter succinogenes and Ruminococcus flavefaciens, fungi, methanogenic archaea and protozoa were similar in fermenters fed T250 and CON substrates, but fermenters fed C250 and M250 substrates had lower abundances of R. flavefaciens, fungi and protozoa than those fed the CON substrate. Results indicated that tomato fruits could replace dietary barley grain up to 250 g/kg of substrate DM without noticeable effects on rumen fermentation and microbial populations, but the inclusion of cucumber fruits at 250 g/kg of substrate DM negatively affected some microbial populations as it tended to reduce microbial N synthesis and changed the VFA profile. More studies are needed to identify the dietary inclusion level of cucumber which produces no detrimental effects on rumen fermentation and microbial growth.
Resumo:
The effects of the inclusion of raw glycerin (GLYC) and raw lecithin, in the diet (23 to 55 wk) on liver characteristics and various serum lipid fractions were studied in brown egg-laying hens at 55 wk of age. The control diets were based on corn, soybean meal, and 4% supplemental fat and contained 2,750 kcal AMEn/kg, 16.5% CP, and 0.73% digestible Lys. The diets were arranged as a 2 × 3 factorial with 2 levels of GLYC (0 and 7%) and 3 animal fat to lecithin ratios (4:0, 2:2, and 0:4%). Each treatment was replicated 8 times and the experimental unit was a cage with 10 hens. At 55 wk of age, 2 hens per cage replicate were randomly selected, weighed individually, and slaughtered by CO2 inhalation. Liver was immediately removed and weighed and the color recorded by spectrophotometry. In addition, blood samples from one bird per replicate were collected from the wing vein and the concentration of total cholesterol, low and high density lipoprotein cholesterol, and triglycerides were determined. The data were analyzed as a completely randomized design and the main effects of GLYC and lecithin content of the diet and the interactions were determined. No interactions between GLYC and lecithin content of the diets were detected for any of the variables studied. Liver characteristics and serum lipid traits were not affected by the inclusion of GLYC in the diet. The substitution of animal fat by lecithin, however, reduced the redness (a* 14.9 to 13.8) and yellowness (b* 8.60 to 7.20) values of the liver (P < 0.05) but did not affect the content of serum lipid fractions. It is concluded that the inclusion of GLYC and lecithin in the diet did not affect liver size or serum lipid fraction. However, the inclusion of lecithin reduced the a* and b* value of the liver
Resumo:
Fermenters are widely used to study ruminal fermentation, but information on microbial populations developing in fermenters over the incubation period is limited. Four Rusitec fermenters were fed 2 diets representative of those administered to dairy sheep(DAI; 50:50 alfalfa hay:concentrate) and fattening lambs (FAT; 15:85 barley straw:concentrate) in a crossover design with 2 14-d incubation periods to assess the evolution of the microbial populations. There were 4 fermenters per diet.
Resumo:
We have previously shown beneficial effects of dietary protein restriction on transforming growth factor beta (TGF-beta) expression and glomerular matrix accumulation in experimental glomerulonephritis. We hypothesized that these effects result from restriction of dietary L-arginine intake. Arginine is a precursor for three pathways, the products of which are involved in tissue injury and repair: nitric oxide, an effector molecule in inflammatory and immunological tissue injury; polyamines, which are required for DNA synthesis and cell growth; and proline, which is required for collagen production. Rats were fed six isocaloric diets differing in L-arginine and/or total protein content, starting immediately after induction of glomerulonephritis by injection of an antibody reactive to glomerular mesangial cells. Mesangial cell lysis and monocyte/macrophage infiltration did not differ with diet. However, restriction of dietary L-arginine intake, even when total protein intake was normal, resulted in decreased proteinuria, decreased expression of TGF-beta 1 mRNA and TGF-beta 1 protein, and decreased production and deposition of matrix components. L-Arginine, but not D-arginine, supplementation to low protein diets reversed these effects. These results implicate arginine as a key component in the beneficial effects of low protein diet.
Resumo:
Aquaculture growth has intensified the need for a diversification of nutritionally appropriate aquafeed ingredients. The purpose of this study was to evaluate Spirulina, a blue-green microalgae, and soybean meal as the sole protein sources in grow-out Tilapia diets. We constructed 3 experimental diets with soybean meal and 0,15, 30, and 45% Spirulina (SBM, SP15, SP30, and SP45 respectively) as their main protein sources. We compared these diets to a commercial Tilapia diet (CC). Additionally, to evaluate the benefit of fishmeal inclusion, fishmeal was added (2 and 10%) to the most successful Spirulina containing diet (FM2, FM10). We evaluated these experimental diets based on their physical properties, palatability, growth potential, waste production, and overall cost. No significant differences in growth performance were found between any of the diets. Total ammonia nitrogen (TAN) and total phosphorus (TP) levels in each tank were significantly affected by diet (p<0.05). CC had significantly higher TP than the experimental diets and SP15 had significantly higher TAN than the other diets. Only CC was found to be significantly more palatable than the experimental diets, and Spirulina inclusion was inversely correlated to pellet stability. Lastly, SP15 was the most profitable experimental diet. We recommend eliminating fishmeal from grow-out Tilapia diets in favour of soybean meal and Spirulina. Spirulina should, however, be limited to 15% to avoid the negative effects it has on stability and profitability, and its possible effect on feed intake.
EEC Council considers poultry question. Bulletin from the European Community. No. 65, September 1963