959 resultados para Potential theory (Physics)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atmospheric electrical Potential Gradient (PG) arises from global thunderstorm activity, but surface measurements of the atmospheric Potential Gradient (PG) are influenced by global thunderstorms and local aerosol concentration changes. The local aerosol change can be monitored independently, and in some cases the concentration changes are closely related to PG changes. For these circumstances, a general theory to remove the local aerosol influence on PG measurements has been developed. Continuous measurements of PG and aerosol mass concentration were made during 24–31 Dec, 2005 within an urban environment at Reading, UK. The average diurnal variation of PG showed a double diurnal cycle, with maxima in the early morning and evening hours. The aerosol concentration has similar double maxima. Removing the aerosol using from the PG and aerosol correlation returns a single diurnal cycle, suggestive of the more global PG diurnal cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory of mind ability has been associated with performance in interpersonal interactions and has been found to influence aspects such as emotion recognition, social competence, and social anxiety. Being able to attribute mental states to others requires attention to subtle communication cues such as facial emotional expressions. Decoding and interpreting emotions expressed by the face, especially those with negative valence, are essential skills to successful social interaction. The current study explored the association between theory of mind skills and attentional bias to facial emotional expressions. According to the study hypothesis, individuals with poor theory of mind skills showed preferential attention to negative faces over both non-negative faces and neutral objects. Tentative explanations for the findings are offered emphasizing the potential adaptive role of vigilance for threat as a way of allocating a limited capacity to interpret others’ mental states to obtain as much information as possible about potential danger in the social environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A person with a moderate or severe motor disability will often use specialised or adapted tools to assist their interaction with a general environment. Such tools can assist with the movement of a person's arms so as to facilitate manipulation, can provide postural supports, or interface to computers, wheelchairs or similar assistive technologies. Designing such devices with programmable stiffness and damping may offer a better means for the person to have effective control of their surroundings. This paper addresses the possibility of designing some assistive technologies using impedance elements that can adapt to the user and the circumstances. Two impedance elements are proposed. The first, based on magnetic particle brakes, allows control of the damping coefficient in a passive element. The second, based on detuning the P-D controller in a servo-motor mechanism, allows control of both stiffness and damping. Such a mechanical impedance can be modulated to the conditions imposed by the task in hand. The limits of linear theory are explored and possible uses of programmable impedance elements are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Density Functional Theory (DFT) has been used with an empirically-derived correction for the wavenumbers of vibrational band positions to predict the infrared spectra of several fluorinated esters (FESs). Radiative efficiencies (REs) were then determined using the method of Pinnock et al. and these were used with atmospheric lifetimes from the literature to determine the direct global warming potentials of FESs. FESs, in particular fluoroalkylacetates, alkylfluoroacetates and fluoroalkylformates, are potential greenhouse gases and their likely long atmospheric lifetimes and relatively large REs, compared to their parent HFEs, make them active contributors to global warming. Here, we use the concept of indirect global warming potential (indirect GWP) to assess the contribution to the warming of several commonly used HFEs emitted from the Earth's surface, explicitly taking into account that these HFEs will be converted into the corresponding FESs in the troposphere. The indirect GWP can be calculated using the radiative efficiencies and lifetimes of the HFE and its degradation FES products. We found that the GWPs of those studied HFEs which have the smallest direct GWP can be increased by 100-1600% when taking account of the cumulative effect due to the secondary FESs formed during HFE atmospheric oxidation. This effect may be particularly important for non-segregated HFEs and some segregated HFEs, which may contribute significantly more to global warming than can be concluded from examination of their direct GWPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the general response theory recently proposed by Ruelle for describing the impact of small perturbations to the non-equilibrium steady states resulting from Axiom A dynamical systems. We show that the causality of the response functions entails the possibility of writing a set of Kramers-Kronig (K-K) relations for the corresponding susceptibilities at all orders of nonlinearity. Nonetheless, only a special class of directly observable susceptibilities obey K-K relations. Specific results are provided for the case of arbitrary order harmonic response, which allows for a very comprehensive K-K analysis and the establishment of sum rules connecting the asymptotic behavior of the harmonic generation susceptibility to the short-time response of the perturbed system. These results set in a more general theoretical framework previous findings obtained for optical systems and simple mechanical models, and shed light on the very general impact of considering the principle of causality for testing self-consistency: the described dispersion relations constitute unavoidable benchmarks that any experimental and model generated dataset must obey. The theory exposed in the present paper is dual to the time-dependent theory of perturbations to equilibrium states and to non-equilibrium steady states, and has in principle similar range of applicability and limitations. In order to connect the equilibrium and the non equilibrium steady state case, we show how to rewrite the classical response theory by Kubo so that response functions formally identical to those proposed by Ruelle, apart from the measure involved in the phase space integration, are obtained. These results, taking into account the chaotic hypothesis by Gallavotti and Cohen, might be relevant in several fields, including climate research. In particular, whereas the fluctuation-dissipation theorem does not work for non-equilibrium systems, because of the non-equivalence between internal and external fluctuations, K-K relations might be robust tools for the definition of a self-consistent theory of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The probability of a quantum particle being detected in a given solid angle is determined by the S-matrix. The explanation of this fact in time-dependent scattering theory is often linked to the quantum flux, since the quantum flux integrated against a (detector-) surface and over a time interval can be viewed as the probability that the particle crosses this surface within the given time interval. Regarding many particle scattering, however, this argument is no longer valid, as each particle arrives at the detector at its own random time. While various treatments of this problem can be envisaged, here we present a straightforward Bohmian analysis of many particle potential scattering from which the S-matrix probability emerges in the limit of large distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lorenz’s theory of available p otential energy (APE) remains the main framework for studying the atmospheric and oceanic energy cycles. Because the APE generation rate is the volume integral of a thermodynamic efficiency times the local diabatic heating/cooling rate, APE theory is often regarded as an extension of the theory of heat engines. Available energetics in classical thermodynamics, however, usually relies on the concept of exergy, and is usually measured relative to a reference state maximising entropy at constant energy, whereas APE’s reference state minimises p otential energy at constant entropy. This review seeks to shed light on the two concepts; it covers local formulations of available energetics, alternative views of the dynamics/thermodynamics coupling, APE theory and the second law, APE production/dissipation, extensions to binary fluids, mean/eddy decomp ositions, APE in incompressible fluids, APE and irreversible turbulent mixing, and the role of mechanical forcing on APE production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assumption that ‘states' primary goal is survival’ lies at the heart of the neorealist paradigm. A careful examination of the assumption, however, reveals that neorealists draw upon a number of distinct interpretations of the ‘survival assumption’ that are then treated as if they are the same, pointing towards conceptual problems that surround the treatment of state preferences. This article offers a specification that focuses on two questions that highlight the role and function of the survival assumption in the neorealist logic: (i) what do states have to lose if they fail to adopt self-help strategies?; and (ii) how does concern for relevant losses motivate state behaviour and affect international outcomes? Answering these questions through the exploration of governing elites' sensitivity towards regime stability and territorial integrity of the state, in turn, addresses the aforementioned conceptual problems. This specification has further implications for the debates among defensive and offensive realists, potential extensions of the neorealist logic beyond the Westphalian states, and the relationship between neorealist theory and policy analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents two schemes of measuring the linear and angular kinematics of a rigid body using a kinematically redundant array of triple-axis accelerometers with potential applications in biomechanics. A novel angular velocity estimation algorithm is proposed and evaluated that can compensate for angular velocity errors using measurements of the direction of gravity. Analysis and discussion of optimal sensor array characteristics are provided. A damped 2 axis pendulum was used to excite all 6 DoF of the a suspended accelerometer array through determined complex motion and is the basis of both simulation and experimental studies. The relationship between accuracy and sensor redundancy is investigated for arrays of up to 100 triple axis (300 accelerometer axes) accelerometers in simulation and 10 equivalent sensors (30 accelerometer axes) in the laboratory test rig. The paper also reports on the sensor calibration techniques and hardware implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple four-dimensional assimilation technique, called Newtonian relaxation, has been applied to the Hamburg climate model (ECHAM), to enable comparison of model output with observations for short periods of time. The prognostic model variables vorticity, divergence, temperature, and surface pressure have been relaxed toward European Center for Medium-Range Weather Forecasts (ECMWF) global meteorological analyses. Several experiments have been carried out, in which the values of the relaxation coefficients have been varied to find out which values are most usable for our purpose. To be able to use the method for validation of model physics or chemistry, good agreement of the model simulated mass and wind field is required. In addition, the model physics should not be disturbed too strongly by the relaxation forcing itself. Both aspects have been investigated. Good agreement with basic observed quantities, like wind, temperature, and pressure is obtained for most simulations in the extratropics. Derived variables, like precipitation and evaporation, have been compared with ECMWF forecasts and observations. Agreement for these variables is smaller than for the basic observed quantities. Nevertheless, considerable improvement is obtained relative to a control run without assimilation. Differences between tropics and extratropics are smaller than for the basic observed quantities. Results also show that precipitation and evaporation are affected by a sort of continuous spin-up which is introduced by the relaxation: the bias (ECMWF-ECHAM) is increasing with increasing relaxation forcing. In agreement with this result we found that with increasing relaxation forcing the vertical exchange of tracers by turbulent boundary layer mixing and, in a lesser extent, by convection, is reduced.