917 resultados para Pore structure characterization, Silica Monoliths, Mesopores, Macropores
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
The structure of the various asphaltenic subfractions found in crude oil was evaluated. For this purpose, C5 asphaltenes were extracted from an asphaltic residue using n-pentane as the flocculant solvent. The different subfractions were isolated from the C5 asphaltenes by the difference in solubility in different solvents. These were characterized by infrared spectroscopy, nuclear magnetic resonance, X-ray fluorescence, elementary analysis and mass spectrometry. The results confirmed that the subfractions extracted with higher alkanes had greater aromaticity and molar mass. However, small solubility variations between the subfractions were attributed mainly to the variation in the concentrations of cyclical hydrocarbon compounds and metals.
Resumo:
Because of their practical applications, porous materials attract the attention of undergraduate students in a way that can be used to teach techniques and concepts in various chemistry disciplines. Porous materials are studied in various chemistry disciplines, including inorganic, organic, and physical chemistry. In this work, the syntheses of a microporous material and a mesoporous material are presented. The porosity of the synthesized materials is characterized by X-ray diffraction analysis. We show that this technique can be used to determine the pore dimensions of the synthesized materials.
Resumo:
This study aims to synthesize and characterize organoclays developed from an Argentinian montmorillonite (Bent) using hexadecyltrimethylammonium bromide (HDTMA-Br) as the intercalation agent. Subsequently, an adsorption mechanism is proposed. The obtained organoclays were more hydrophobic than the starting clay. Surfactant molecules were adsorbed initially through cation exchange in sites placed in the interlayer space of the clay. Adsorption in such sites continued until the interlayer space was saturated. Depending on the surfactant loading introduced during the intercalation process, different organizations of surfactant in the interlayer were obtained. Further adsorption of surfactant occurred in the mesopores generated by tactoids in the "house of cards" organization. This process kept surfactant molecules relatively free and out of the interlayer space.
Resumo:
In this work, we report the Biginelli-type reaction between various aldehydes, acetophenones and urea systems in the presence of sulfonic acid functionalized silica (SBA-Pr-SO3H) under solvent-free conditions, which led to 4,6-diarylpyrimidin-2(1H)-ones derivatives. SBA-Pr-SO3H with a pore size of 6 nm was found to be an efficient heterogeneous solid acid catalyst for this reaction which led to high product yields, was environmentally benign with short reaction times and easy handling.
Resumo:
The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC) followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min) did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls). The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.
Resumo:
Kevlar [poly (p-phenilylene terephtalamide)], was used as a precursor in the preparation of activated carbon fibers. For this intention, physical and chemical activations were carried out. Activated fibers were physically prepared from the carbonization of the Kevlar and its later activation with CO2 and steam of water, by the other hand; the chemically activated fibers were obtained by means of the impregnation of the material with phosphoric acid and their later carbonization. Different conditions were used and preliminary analyses of the precursor were taken into account (TGA-DTA / IR). The resulting fibers were characterized by N2 (77K) adsorption, infrared spectroscopy, SEM, and immersion calorimetry. Yields and Burn off were also evaluated. The results shows that if you want to synthesize activated carbon fibers from Kevlar strong conditions respect to the commonly used such as water steam, high phosphoric acid concentrations and methods of impregnation are the ones who allows the development of optimal surface areas and pore volumes.
Resumo:
Humic substances (HS) were isolated from the sediments of Lobos Pond (Argentina) using mild conditions to preserve their native structure. The HS (humic and fulvic acids) were characterized by means of elemental analysis and FTIR spectroscopy. Also a by-product obtained during fulvic acids (FA) fractionation (an amorphous white solid residue) was analyzed. Results revealed possible interactions between FA and inorganic-organic substances that may have implications referring to bioavailability. Other limnological implications, such as autochtonous origin of HS linked with the hydrology, and change of pH during stormy weather that affects HS interactions, are discussed.
Resumo:
During mitotic cell division, the genetic material packed into chromosomes is divided equally between two daughter cells. Before the separation of the two copies of a chromosome (sister chromatids), each chromosome has to be properly connected with microtubules of the mitotic spindle apparatus and aligned to the centre of the cell. The spindle assembly checkpoint (SAC) monitors connections between microtubules and chromosomes as well as tension applied across the centromere. Microtubules connect to a chromosome via kinetochores, which are proteinaceous organelles assembled onto the centromeric region of the sister chromatids. Improper kinetochore-microtubule attachments activate the SAC and block chromosome segregation until errors are corrected and all chromosomes are connected to the mitotic spindle in a bipolar manner. The purpose of this surveillance mechanism is to prevent loss or gain of chromosomes in daughter cells that according to current understanding contributes to cancer formation. Numerous proteins participate in the regulation of mitotic progression. In this thesis, the mitotic tasks of three kinetochore proteins, Shugoshin 1 (Sgo1), INCENP, and p38 MAP kinase (p38 MAPK), were investigated. Sgo1 is a protector of centromeric cohesion. It is also described in the tension-sensing mechanism of the SAC and in the regulation of kinetochore-microtubule connections. Our results revealed a central role for Sgo1 in a novel branch of kinetochore assembly. INCENP constitutes part of the chromosomal passenger complex (CPC). The other members of the core complex are the Aurora B kinase, Survivin and Borealin. CPC is an important regulatory element of cell division having several roles at various stages of mitosis. Our results indicated that INCENP and Aurora B are highly dynamic proteins at the mitotic centromeres and suggested a new role for CPC in regulation of chromosome movements and spindle structure during late mitosis. The p38 MAPK has been implicated in G1 and G2 checkpoints during the cell cycle. However, its role in mitotic progression and control of SAC signaling has been controversial. In this thesis, we discovered a novel function for p38γ MAPK in chromosome orientation and spindle structure as well as in promotion of viability of mitotic cells.
Resumo:
This study aims at detailing bimodal pore distribution by means of water retention curve in an oxidic-gibbsitic Latosol and in a kaolinitic cambisol Latossol under conservation management system of coffee crop. Samples were collected at depths of 20; 40; 80; 120 and 160 cm on coffee trees rows and between rows under oxidic-gibbsitic Latosol (LVd) and kaolinitic cambisol Latossol (LVAd). Water retention curve was determined at matrix potentials (Ψm) -1; -2; -4; -6; -10 kPa obtained from the suction unit; the Ψm of -33; -100; -500; -1,500 kPa were obtained by the Richards extractor, and WP4-T psychrometer was used to determine Ψm -1,500 to -300,000 kPa. The water retention data were adjusted to the double van Genuchten model by nonlinear model procedures of the R 2.12.1 software. Was estimated the model parameter and inflection point slope. The system promoted changes in soil structure and water retention for the conditions evaluated, and both showed bimodal pores distribution, which were stronger in LVd. There was a strong influence of mineralogy gibbsitic in the water retention more negative than Ψm -1500 kPa, reflected in the values of the residual water content.
Resumo:
This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.
Resumo:
Blood-sucking diptera are important parasites in bovine production systems, especially regarding confinement conditions. Haematobia irritans, the horn fly, is one of the most troublesome species within bovine production systems, due to the intense stress imposed to the animals. An important aspect while studying the variability within a species is the study of the geographic structure of its populations and, attempting to find out the genetic flow of Brazilian populations of horn fly, the RAPD technique, which is suited for this purpose, has been used. The use of molecular markers generated from RAPD made it possible to identify the geographic origin of samples from different Brazilian geographic regions, as well as to estimate the genotypic flow among the different Brazilian populations of the horn fly.
Resumo:
Mass-produced paper electronics (large area organic printed electronics on paper-based substrates, “throw-away electronics”) has the potential to introduce the use of flexible electronic applications in everyday life. While paper manufacturing and printing have a long history, they were not developed with electronic applications in mind. Modifications to paper substrates and printing processes are required in order to obtain working electronic devices. This should be done while maintaining the high throughput of conventional printing techniques and the low cost and recyclability of paper. An understanding of the interactions between the functional materials, the printing process and the substrate are required for successful manufacturing of advanced devices on paper. Based on the understanding, a recyclable, multilayer-coated paper-based substrate that combines adequate barrier and printability properties for printed electronics and sensor applications was developed in this work. In this multilayer structure, a thin top-coating consisting of mineral pigments is coated on top of a dispersion-coated barrier layer. The top-coating provides well-controlled sorption properties through controlled thickness and porosity, thus enabling optimizing the printability of functional materials. The penetration of ink solvents and functional materials stops at the barrier layer, which not only improves the performance of the functional material but also eliminates potential fiber swelling and de-bonding that can occur when the solvents are allowed to penetrate into the base paper. The multi-layer coated paper under consideration in the current work consists of a pre-coating and a smoothing layer on which the barrier layer is deposited. Coated fine paper may also be used directly as basepaper, ensuring a smooth base for the barrier layer. The top layer is thin and smooth consisting of mineral pigments such as kaolin, precipitated calcium carbonate, silica or blends of these. All the materials in the coating structure have been chosen in order to maintain the recyclability and sustainability of the substrate. The substrate can be coated in steps, sequentially layer by layer, which requires detailed understanding and tuning of the wetting properties and topography of the barrier layer versus the surface tension of the top-coating. A cost competitive method for industrial scale production is the curtain coating technique allowing extremely thin top-coatings to be applied simultaneously with a closed and sealed barrier layer. The understanding of the interactions between functional materials formulated and applied on paper as inks, makes it possible to create a paper-based substrate that can be used to manufacture printed electronics-based devices and sensors on paper. The multitude of functional materials and their complex interactions make it challenging to draw general conclusions in this topic area. Inevitably, the results become partially specific to the device chosen and the materials needed in its manufacturing. Based on the results, it is clear that for inks based on dissolved or small size functional materials, a barrier layer is beneficial and ensures the functionality of the printed material in a device. The required active barrier life time depends on the solvents or analytes used and their volatility. High aspect ratio mineral pigments, which create tortuous pathways and physical barriers within the barrier layer limit the penetration of solvents used in functional inks. The surface pore volume and pore size can be optimized for a given printing process and ink through a choice of pigment type and coating layer thickness. However, when manufacturing multilayer functional devices, such as transistors, which consist of several printed layers, compromises have to be made. E.g., while a thick and porous top-coating is preferable for printing of source and drain electrodes with a silver particle ink, a thinner and less absorbing surface is required to form a functional semiconducting layer. With the multilayer coating structure concept developed in this work, it was possible to make the paper substrate suitable for printed functionality. The possibility of printing functional devices, such as transistors, sensors and pixels in a roll-to-roll process on paper is demonstrated which may enable introducing paper for use in disposable “onetime use” or “throwaway” electronics and sensors, such as lab-on-strip devices for various analyses, consumer packages equipped with product quality sensors or remote tracking devices.
Resumo:
Harmful sulfur dioxide (SO2) emissions from power plants have increasingly been restricted since the 1970’s. Circulating fluidized bed (CFB) scrubber is a dry flue gas desulfurization method of absorbing SO2 out of the flue gas with sorbent. In current commercial plants, the used sorbent is commercial or on-site hydrated calcium hydroxide. The CFB scrubber process is characterized by a close but adequate approach to the flue gas saturation temperature that is achieved by spraying water to the absorber followed by a particulate control device. Very high SO2 removal is achieved along with a dry byproduct that is continuously recirculated back to the absorber for enhanced sorbent utilization. The aim of this work is to develop a method that would characterize the reactivity of sorbents used in CFB scrubbers and to conclude how different process parameters and sorbent properties affect the sulfur absorption. The developed characterization method is based on a fixed bed of sorbent and inert silica sand, through which an SO2 containing gas mixture is led. The reaction occurs in the bed and the SO2 concentration in the outlet as a function of time, a breakthrough curve, is obtained from the analyzer. Reactivity of the sorbents are evaluated by the absorbed sulfur amount. Results suggest that out of process parameters, lower SO2 concentration, lower temperature and higher moisture content enhance the desulfurization. Between different sorbents, specific surface area seems to be the most significant parameter. Large surface area linearly leads to more efficient desulfurization. Overall, the solid conversion levels in the tests were very low creating uncertainty to the validity of the results. New desing is being planned to overcome the problems of the device.
Resumo:
Inorganic-organic sol-gel hybrid coatings can be used for improving and modifying properties of wood-based materials. By selecting a proper precursor, wood can be made water repellent, decay-, moisture- or UV-resistant. However, to control the barrier properties of sol-gel coatings on wood substrates against moisture uptake and weathering, an understanding of the surface morphology and chemistry of the deposited sol-gel coatings on wood substrates is needed. Mechanical pulp is used in production of wood-containing printing papers. The physical and chemical fiber surface characteristics, as created in the chosen mechanical pulp manufacturing process, play a key role in controlling the properties of the end-use product. A detailed understanding of how process parameters influence fiber surfaces can help improving cost-effectiveness of pulp and paper production. The current work focuses on physico-chemical characterization of modified wood-based materials with surface sensitive analytical tools. The overall objectives were, through advanced microscopy and chemical analysis techniques, (i) to collect versatile information about the surface structures of Norway spruce thermomechanical pulp fiber walls and understand how they are influenced by the selected chemical treatments, and (ii) to clarify the effect of various sol-gel coatings on surface structural and chemical properties of wood-based substrates. A special emphasis was on understanding the effect of sol-gel coatings on the water repellency of modified wood and paper surfaces. In the first part of the work, effects of chemical treatment on micro- and nano-scale surface structure of 1st stage TMP latewood fibers from Norway spruce were investigated. The chemicals applied were buffered sodium oxalate and hydrochloric acid. The outer and the inner fiber wall layers of the untreated and chemically treated fibers were separately analyzed by light microscopy, atomic force microscopy and field-emission scanning electron microscopy. The selected characterization methods enabled the demonstration of the effect of different treatments on the fiber surface structure, both visually and quantitatively. The outer fiber wall areas appeared as intact bands surrounding the fiber and they were clearly rougher than areas of exposed inner fiber wall. The roughness of the outer fiber wall areas increased most in the sodium oxalate treatment. The results indicated formation of more surface pores on the exposed inner fiber wall areas than on the corresponding outer fiber wall areas as a result of the chemical treatments. The hydrochloric acid treatment seemed to increase the surface porosity of the inner wall areas. In the second part of the work, three silane-based sol-gel hybrid coatings were selected in order to improve moisture resistance of wood and paper substrates. The coatings differed from each other in terms of having different alkyl (CH3–, CH3-(CH2)7–) and fluorocarbon (CF3–) chains attached to the trialkoxysilane sol-gel precursor. The sol-gel coatings were deposited by a wet coating method, i.e. spraying or spreading by brush. The effect of solgel coatings on surface structural and chemical properties of wood-based substrates was studied by using advanced surface analyzing tools: atomic force microscopy, X-ray photoelectron spectroscopy and time-of-flight secondary ion spectroscopy. The results show that the applied sol-gel coatings, deposited as thin films or particulate coatings, have different effects on surface characteristics of wood and wood-based materials. The coating which has a long hydrocarbon chain (CH3-(CH2)7–) attached to the silane backbone (octyltriethoxysilane) produced the highest hydrophobicity for wood and wood-based materials.