975 resultados para Polyvinyl acetate.
Resumo:
BACKGROUND: There is currently no consensus in the literature on which embolic agent induces the greatest degree of liver hypertrophy after portal vein embolization (PVE). Only experimental results in a pig model have demonstrated an advantage of n-butyl-cyanoacrylate (NBCA) over 3 other embolic materials (hydrophilic gel, small and large polyvinyl alcohol particles) for PVE. Therefore, the aim of this human study was to retrospectively compare the results of PVE using NBCA with those using spherical microparticles plus coils. METHODS: A total of 34 patients underwent PVE using either NBCA (n = 20), or spherical microparticles plus coils (n = 14). PVE was decided according to preoperative volumetry on the basis of contrast-enhanced CT. Groups were compared for age, sex, volume of the left lobe before PVE and future remnant liver ratio (FRL) (volume of the left lobe/total liver volume - tumor volume). The primary end point was the increase in left lobe volume 1 month after PVE. Secondary end points were procedure complications and biological tolerance. RESULTS: Both groups were similar in terms of age, sex ratio, left lobe volume, and FRL before PVE. NBCA induced a greater increase in volume after PVE than did microparticles plus coils (respectively, +74 ± 69 % and +23 ± 14 %, p < 0.05). The amount of contrast medium used for the procedure was significantly larger when microparticles and coils rather than NBCA were used (respectively, 264 ± 43 ml and 162 ± 34 ml, p < 0.01). The rate of PVE complications as well as the biological tolerance was similar in both groups. CONCLUSION: NBCA seems more effective than spherical microparticles plus coils to induce left-lobe hypertrophy.
Resumo:
Työssä tutkittiin muurahais-, etikka- ja propionihapon sekä näiden johdannaisten teollisia sovelluskohteita. Työn tarkoituksena oli löytää muurahaishapolle tai sen johdannaisille potentiaalisia käyttökohteita etikka- ja propionihapon sekä näiden johdannaisten teollisista sovelluskohteista. Työssä on laaja kirjallisuuskatsaus, jossa käsitellään muurahais-, etikka- ja propionihapon kemiallisia ja fysikaalisia ominaisuuksia, ekologisia ja korroosiovaikutuksia sekä yleensä orgaanisten happojen antimikrobisia ominaisuuksia. Tämän lisäksi työssä esitellään tarkasteltavien happojen sekä happojohdannaisten markkinat teollisissa sovelluksissa Yhdysvalloissa, Länsi-Euroopassa ja Japanissa. Korvaavuuksien syventävän analyysin avulla pyrittiin löytämään ne sovelluskohteet muurahaishapolle tai sen johdannaisille, joissa ne voisivat olla hinnaltaan kilpailukykyisiä vastaavien etikka-ja propionihapposovellusten kanssa. Mahdollisen korvaavuuden rajaksi asetettiin5 000 tonnia sovelluskohdetta kohti. Kirjallisuustutkimuksen perusteella etikkahapon estereiden (asetaattiestereiden) käyttökohde liuottimien komponentteinavoisi olla potentiaalisin käyttökohde vastaaville muurahaishapon estereille (formiaattiestereille). Asetaattiestereitä on ennustettu käytettävän maailmalla 2 808 000 tonnia vuonna 2006. Niiden pääkäyttöalueet ovat liuottimina pintapäällysteissä kuten maaleissa, lakoissa sekä painomusteissa ja -väreissä. Toistaiseksi formiaattiestereitä on hyödynnetty vain muutamia satoja tonneja lähinnä lääketeollisuuden sovelluksissa välituotteena. Työssä tehtyjen alustavien laskelmien perusteella muurahaishapon esterit ovat hintatasoltaan kilpailukykyinen vaihtoehto vastaaville asetaattiestereille. Diplomityön kokeellisessa osassa etyyliformiaattia valmistettiin menestyksekkäästi laboratoriomittakaavassa. Toinen potentiaalinen uusi tuote on selluloosaformiaattikuitu (SF-kuitu). Selluloosa-asetaattikuitua käytettiin vuonna 2001 845 000 tonnia, josta 79 % kului savukefilttereiden valmistukseen. SF-kuitu on kirjallisuuden mukaan vaihtoehtoinen raaka-aine savukefilttereiden valmistukseen.
Resumo:
Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.
Resumo:
Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.
Resumo:
The synthesis of the major component of the sex pheromone secretion of the processionary moth, Tkawnztopoeja pltyocampa (Denis and Schiff.) (Lepidoptera, Notodontidae), (Z)-13-hexadecen-ll-ynyl acetate (1), the corresponding (E)-isomer (2) and the four structurally related model compounds (Z⁄E,Z,Z)-5,9,13-hexadecatrienyl acetate (3), (Z⁄E,Z,Z)-3,7,ll-hexadecatrienyl acetate (4), (Z⁄E,E,Z)-7,9,13-hexadecatrienyl acetate (5) and (Z)-7-hexadecen-5-ynyl acetate (6) is described.
Resumo:
Se ha estudiado el papel, como inhibidores de la acción feromonal, de determinados fluoroderivados, análogos estructurales del acetato de (Z)-l 1-hexadecenilo, componente principal de la feromona sexual del noctuido Sesamia nonagrioides Lef. Dichos compuestos fueron los análogos fluoroacetato (mono, di y trifluoroacetato de (Z)-l 1-hexadecenilo) y la trifluorometilcetona análoga [(Z)-1,1,1 -trifluoro-14-nonadecen-2-ona]. La acción inhibidora fue evaluada a partir de los resultados de actividad electrofisiológica (pruebas de electroantenograma, EAG), de estudios de comportamiento en pruebas de túnel de viento y de pruebas de capturas en campo. Los acetatos fluorados, especialmente el mono y el trifluoracetato, se mostraron como buenos inhibidores de la acción atrayente de la feromona en los tres tipos de pruebas realizadas, mientras que la trifluorometilcetona análoga mostró una actividad mucho menor.
Resumo:
miR-21 is the most commonly over-expressed microRNA (miRNA) in cancer and a proven oncogene. Hsa-miR-21 is located on chromosome 17q23.2, immediately downstream of the vacuole membrane protein-1 (VMP1) gene, also known as TMEM49. VMP1 transcripts initiate ∼130 kb upstream of miR-21, are spliced, and polyadenylated only a few hundred base pairs upstream of the miR-21 hairpin. On the other hand, primary miR-21 transcripts (pri-miR-21) originate within the last introns of VMP1, but bypass VMP1 polyadenylation signals to include the miR-21 hairpin. Here, we report that VMP1 transcripts can also bypass these polyadenylation signals to include miR-21, thus providing a novel and independently regulated source of miR-21, termed VMP1–miR-21. Northern blotting, gene-specific RT-PCR, RNA pull-down and DNA branching assays support that VMP1–miR-21 is expressed at significant levels in a number of cancer cell lines and that it is processed by the Microprocessor complex to produce mature miR-21. VMP1 and pri-miR-21 are induced by common stimuli, such as phorbol-12-myristate-13-acetate (PMA) and androgens, but show differential responses to some stimuli such as epigenetic modifying agents. Collectively, these results indicate that miR-21 is a unique miRNA capable of being regulated by alternative polyadenylation and two independent gene promoters.
Resumo:
This research was done to study the reproductive system of papaya hermaphrodite plant based on the histochemical nature of pollen grain, stigma receptivity, in vivo pollen grain germination and pollen:ovule ratio. In the histochemical analysis, pollen grains were stained by using Sudan IV and I2KI solution ; the stigma receptivity was assessed by alpha-naphthtyl acetate solution in closed and opened flowers. Pollen germination and pollen tube growing were examined in flower buds near anthesis with 0.1% aniline blue. To estimate the pollen:ovule ratio , anthers from each flower bud were dissected and all pollen grains were counted; ovules were dissected from ovaries and were counted under stereomicroscope. The results indicated that papaya pollen grains are of lipidic nature; the stigmas were receptive before the opening and until 48 hours after opening; the pollen grains germinated and emitted polinic tube before flower opening and the pollen:ovule ratio indicated the predominance of autogamous reproductive system. These results indicate that hermaphrodite papaya trees is preferentially of optional autogamous with cleistogamy.
Resumo:
We performed a number of tests with the aim to develop an effective extraction method for the analysis of carotenoid content in maize seed. Mixtures of methanol–ethyl acetate (6:4, v/v) and methanol–tetrahydrofuran (1:1, v/v) were the most effective solvent systems for carotenoid extraction from maize endosperm under the conditions assayed. In addition, we also addressed sample preparation prior to the analysis of carotenoids by liquid chromatography (LC). The LC response of extracted carotenoids and standards in several solvents was evaluated and results were related to the degree of solubility of these pigments. Three key factors were found to be important when selecting a suitable injection solvent: compatibility between the mobile phase and injection solvent, carotenoid polarity and content in the matrix.
Resumo:
Epidermal growth factor (EGF) and insulin induced similar effects in isolated rat adipocytes. To determine whether EGF and insulin produced similar effects through the same mechanisms, we focused on lipolysis. Insulin inhibited the lipolysis stimulated by isoproterenol, glucagon (either alone or in combination with adenosine deaminase), adenosine deaminase itself, or forskolin. In contrast, EGF did not inhibit the lipolysis stimulated by forskolin or by hormones when the cells were also incubated with adenosine deaminase. The effect of insulin, but not that of EGF, on isoproterenol-stimulated lipolysis disappeared when adipocytes were incubated with 1 microM wortmannin. These results indicate that EGF and insulin affected lipolysis through different mechanisms. We observed that EGF, but not insulin, increased cytosolic Ca2+. The effect of EGF, but not that of insulin, disappeared when the cells were incubated in a Ca2+-free medium. We suggest that EGF, but not insulin, mediate its antilipolytic effect through a Ca2+-dependent mechanism which, however, do not involve Ca2+-activated protein kinase C isoforms. This is based on the following: 1) phorbol 12-myristate 13-acetate affected lipolysis in an opposite way to that of EGF; and 2) the protein kinase C inhibitor bisindolylmaleimide GF 109203X did not affect the antilipolytic action of EGF. Our results indicate that the antilipolytic effect of EGF resembles more that of vasopressin than that of insulin.
Resumo:
A plot study was conducted to assess changes in Cd phytoavailability to a tomato cultivar in an agricultural soil in Southeastern Spain amended in two different ways (A and B), under controlled conditions. The experimental soil corresponded to a fine-loamy carbonatic thermic Calcidic Haploxeroll (Soil Survey Staff, 1998). A) Soil was amended with a single application of sewage sludge from a municipal source that had a total Cd concentration of 0.5 mg kg-1 at a rate that represented a final average concentration in the mixture of soil and sludge of less than 50 µg Cd kg-1. B) The amendment consisted of the addition of a mineral fertiliser with the same amount of NPK as in the sewage sludge application. The final levels of Cd were supposed to be negligible. A plot series without amendments was also performed (C). DTPA plus triethanolamine, and ammonium acetate extractable fractions in soils were analysed for all the plots. The time-dependent Cd accumulation in different parts of the tomato plants was studied by means of a Cd salt treatment. For each block (A, B, and C) four levels of Cd (0, 3, 30, 100 mg kg-1) were added as CdCl2. There was a significant increase in plant Cd after the initial cropping. Tomato stems, leaves and fruits were analysed separately for Cd determination. Differential Cd distribution and accumulation in tomato parts was detected.
Resumo:
Biofilters degrade only a small fraction of the natural organic matter (NOM) contained in seawater which is the leading cause of biofouling in downstream processes. This work studies the effects of chemical additions on NOM biodegradation by biofilters. In this work, biofiltration of seawater with an empty bed contact time (EBCT) of 6 min and a hydraulic loading rate of 10 m h-1 reduces the biological oxygen demand (BOD7) by 8%, the dissolved organic carbon (DOC) by 6% and the UV absorbance at 254 nm (A254) by 7%. Different amounts of ammonium chloride are added to the seawater (up to twice the total dissolved nitrogen in untreated seawater) to study its possible effect on the removal of NOM by a pilot-scale biofilter. Seawater is amended with different amounts of easily biodegradable dissolved organic carbon (BDOC) supplied as sodium acetate (up to twice the DOC) for the same purpose. The results of this work reveal that the ammonium chloride additions do not significantly affect NOM removal and the sodium acetate is completely consumed by the biofiltration process. For both types of chemical additions, the BOD7, DOC and A254 in the outlet stream of the biofilter are similar to the values for the untreated control. These results indicate that this biofilter easily removes the BDOC from the seawater when the EBCT is not above 6 min. Furthermore, nitrogen does not limit the NOM biodegradation in seawater under these experimental conditions.
Resumo:
Työn tavoitteena oli kehittää mikro-organismeja kestävä suoli eli makkarankuori. Työ suoritettiin modifioimalla regeneroitua selluloosaa. Modifiointiliuoksena käytettiin etikkahapon ja etikkahappoanhydridin seosta, johon lisättiin rikkihappoa katalyytiksi. Työssä etsittiin parasta yhdistelmää, joka koostui modifiointiradannopeudesta, modifiointiliuoskoostumuksesta ja erilaisista modifiointimenetelmistä. Kirjallisuusosassa käsiteltiin yleisesti asetaattikalvoja, niiden valmistusta ja ominaisuuksia. Lisäksi perehdyttiin entsyymin ominaisuuksiin ja toimintaan yleisesti. Entsyymeistä yksi otettiin lähempään tarkasteluun. Kokeissa regeneroitua selluloosaa modifioitiin liuoksessa, jonka koostumusta muunneltiin. Kokeissa oli kolme erilaista modifiointimenetelmää, joissa käytettiin neljää modifiointiliuoskoostumusta ja kolmea modifiointinopeutta. Mittauksissa tutkittiin modifioinnin vaikutusta suoliin verrattuna normaaleihin suoliin. Suolille tehtiin sekä mekaanisia että kemiallisia testejä. Kemiallisista testeistä tärkein oli testi, jossa modifioitu suoli altistettiin mikro-organismille. Tulosten perusteella valittiin paras menetelmä. Työssä havaittiin yhden menetelmän olevan muita paljon parempi. Tällä menetelmällä suoritettiin toistokokeita, jotka varmistivat jo saatuja tuloksia. Liuoskoostumusten välillä ei ollut suuria eroja, mutta kuitenkin niistä yksi osoittautui parhaimmaksi. Nopeutta oli vaikeampi määrittää, mutta siitäkin saatiin määritettyä tietty haarukka, jossa reaktio oli tehokkain.
Resumo:
Lactate has been shown to offer neuroprotection in several pathologic conditions. This beneficial effect has been attributed to its use as an alternative energy substrate. However, recent description of the expression of the HCA1 receptor for lactate in the central nervous system calls for reassessment of the mechanism by which lactate exerts its neuroprotective effects. Here, we show that HCA1 receptor expression is enhanced 24 hours after reperfusion in an middle cerebral artery occlusion stroke model, in the ischemic cortex. Interestingly, intravenous injection of L-lactate at reperfusion led to further enhancement of HCA1 receptor expression in the cortex and striatum. Using an in vitro oxygen-glucose deprivation model, we show that the HCA1 receptor agonist 3,5-dihydroxybenzoic acid reduces cell death. We also observed that D-lactate, a reputedly non-metabolizable substrate but partial HCA1 receptor agonist, also provided neuroprotection in both in vitro and in vivo ischemia models. Quite unexpectedly, we show D-lactate to be partly extracted and oxidized by the rodent brain. Finally, pyruvate offered neuroprotection in vitro whereas acetate was ineffective. Our data suggest that L- and D-lactate offer neuroprotection in ischemia most likely by acting as both an HCA1 receptor agonist for non-astrocytic (most likely neuronal) cells as well as an energy substrate.
Resumo:
La mort subite est la première cause de mortalité chez les patients souffrant d'une insuffisance rénale terminale traités par dialyse chronique. La technique de dialyse utilisée et la composition chimique du dialysat influencent l'incidence des arythmies. Des études pilotes démontrent que l'utilisation d'un dialysat sans acétate avec perfusion de bicarbonate de sodium en aval du filtre de dialyse, couplée à une modulation du profil de potassium pendant la séance de dialyse, ou acetate free biofiltration with potassium profiled dialysate, permet de réduire l'incidence des arythmies, l'intervalle QT et sa dispersion. La limitation du volume de soustraction liquidienne pendant la dialyse et l'augmentation de la concentration de calcium dans le dialysat constituent d'autres stratégies anti-arythmogènes possibles Sudden death is the first cause of mortality in patients with end stage renal disease undergoing chronic dialysis treatment. The technique of dialysis as well as the chemical composition of the dialysate can impact on the incidence of cardiac arrhythmias. Pilot studies reveal that the use of an acetate-free dialysate with a downstream filter infusion of sodium bicarbonate, coupled with a modulated potassium-profiled dialysate during hemodialysis, or acetate free biofiltration with potassium profiled dialysate, reduces the incidence of arrhythmias, the QT interval and QT dispersion. The limitation of the ultrafiltration volume during the dialysis session, and the increase in calcium concentration in the dialysate are other possible strategies to reduce cardiac arrhythmias.