926 resultados para Polymorphic microsatellites
Resumo:
The pinnotherid crab Dissodactylus primitivus lives parasitically on 2 burrowingechinoid species, Meoma ventricosa and Plagiobrissus grandis. The fecundity of female crabsvaries between hosts, and is higher when parasitizing P. grandis than M. ventricosa. Moreover, thehosts present great variations in morphology (size and density of spines). These characteristicssuggest the potential to differentiate crabs according to host species. We investigated the genetic(microsatellites) and morphometric (outline analysis) differentiation of this parasitic crab between2 host species at 1 Jamaican site (Western Lagoon, Discovery Bay), and compared it with geographicdifferentiation among 4 sites along the north coast of Jamaica. Greater genetic differencesbetween parasites of the 2 sympatric hosts than between parasites of a single host at different geographiclocations would indicate host differentiation. Genetic analyses (microsatellites) did notdetect spatial differentiation (probably due to local hydrography) or differentiation according tohost species. This lack of host differentiation could be explained by mobility of adult crabsbetween hosts. However, there was weak but significant morphological differentiation betweenfemale crabs from the 2 hosts. This morphological difference may reflect constraints due to hostmorphology.
Resumo:
The highly polymorphic fourth component of human complement (C4) is usually encoded by two genes, C4A and C4B, adjacent to the 21-hydroxylase (21-OH) genes and is also remarkable by the high frequency of the null alleles, C4A*Q0 and C4B*Q0. Complete C4 deficiency is exceptional because this condition appears only in homozygotes for the very rare double-null haplotype C4AQ0,BQ0. This condition in most cases gives rise to systemic lupus erythematosus and an increased susceptibility to infections. The molecular basis for complete C4 deficiency has not yet been established. Therefore we studied the DNA of three previously described C4 deficient patients belonging to unrelated families by restriction fragment length polymorphism analysis using C4 and 21-OH probes. These studies revealed a deletion of the C4B and 21-OHA genes in two patients and no deletion at all in the third patient. Therefore, complete C4 deficiency as a result of homozygosity for the C4AQ0, BQ0 haplotype is not a consequence of a deletion of the C4 genes. The molecular basis of this genetic abnormality is certainly very complex and may vary also from one case to another.
Resumo:
UNLABELLED: PREMISE OF THE STUDY: The Frullania tamarisci complex includes eight Holarctic liverwort species. One of these, F. asagrayana, is distributed broadly throughout eastern North America from Canada to the Gulf Coast. Preliminary genetic data suggested that the species includes two groups of populations. This study was designed to test whether the two groups are reproductively isolated biological species. • METHODS: Eighty-eight samples from across the range of F. asagrayana, plus 73 samples from one population, were genotyped for 13 microsatellite loci. Sequences for two plastid loci and nrITS were obtained from 13 accessions. Genetic data were analyzed using coalescent models and Bayesian inference. • KEY RESULTS: Frullania asagrayana is sequence-invariant at the two plastid loci and ITS2, but two clear groups were resolved by microsatellites. The two groups are largely reproductively isolated, but there is a low level of gene flow from the southern to the northern group. No gene flow was detected in the other direction. A local population was heterogeneous but displayed strong genetic structure. • CONCLUSIONS: The genetic structure of F. asagrayana in eastern North America reflects morphologically cryptic differentiation between reproductively isolated groups of populations, near-panmixis within groups, and clonal propagation at local scales. Reproductive isolation between groups that are invariant at the level of nucleotide sequences shows that caution must be exercised in making taxonomic and evolutionary inferences from reciprocal monophyly (or lack thereof) between putative species.
Resumo:
BACKGROUND: Like other vertebrates, primates recognize their relatives, primarily to minimize inbreeding, but also to facilitate nepotism. Although associative, social learning is typically credited for discrimination of familiar kin, discrimination of unfamiliar kin remains unexplained. As sex-biased dispersal in long-lived species cannot consistently prevent encounters between unfamiliar kin, inbreeding remains a threat and mechanisms to avoid it beg explanation. Using a molecular approach that combined analyses of biochemical and microsatellite markers in 17 female and 19 male ring-tailed lemurs (Lemur catta), we describe odor-gene covariance to establish the feasibility of olfactory-mediated kin recognition. RESULTS: Despite derivation from different genital glands, labial and scrotal secretions shared about 170 of their respective 338 and 203 semiochemicals. In addition, these semiochemicals encoded information about genetic relatedness within and between the sexes. Although the sexes showed opposite seasonal patterns in signal complexity, the odor profiles of related individuals (whether same-sex or mixed-sex dyads) converged most strongly in the competitive breeding season. Thus, a strong, mutual olfactory signal of genetic relatedness appeared specifically when such information would be crucial for preventing inbreeding. That weaker signals of genetic relatedness might exist year round could provide a mechanism to explain nepotism between unfamiliar kin. CONCLUSION: We suggest that signal convergence between the sexes may reflect strong selective pressures on kin recognition, whereas signal convergence within the sexes may arise as its by-product or function independently to prevent competition between unfamiliar relatives. The link between an individual's genome and its olfactory signals could be mediated by biosynthetic pathways producing polymorphic semiochemicals or by carrier proteins modifying the individual bouquet of olfactory cues. In conclusion, we unveil a possible olfactory mechanism of kin recognition that has specific relevance to understanding inbreeding avoidance and nepotistic behavior observed in free-ranging primates, and broader relevance to understanding the mechanisms of vertebrate olfactory communication.
Resumo:
The extinction of the giant tortoises of the Seychelles Archipelago has long been suspected but is not beyond doubt. A recent morphological study of the giant tortoises of the western Indian Ocean concluded that specimens of two native Seychelles species survive in captivity today alongside giant tortoises of Aldabra, which are numerous in zoos as well as in the wild. This claim has been controversial because some of the morphological characters used to identify these species, several measures of carapace morphology, are reputed to be quite sensitive to captive conditions. Nonetheless, the potential survival of giant tortoise species previously thought extinct presents an exciting scenario for conservation. We used mitochondrial DNA sequences and nuclear microsatellites to examine the validity of the rediscovered species of Seychelles giant tortoises. Our results indicate that the morphotypes suspected to represent Seychelles species do not show levels of variation and genetic structuring consistent with long periods of reproductive isolation. We found no variation in the mitochondrial control region among 55 individuals examined and no genetic structuring in eight microsatellite loci, pointing to the survival of just a single lineage of Indian Ocean tortoises.
Resumo:
Purpose. To examine the thermal transition(s) between different polymorphic forms of Nifedipine and to define experimental conditions that lead to the generation of polymorph IV. Methods. Experiments were performed using a DSC 823e (Mettler Toledo). Nifedipine exists in four polymorphic forms, as well as an amorphous state. Examination of Nifedipine was conducted using the following method(s): cycle 1: 25ºC to 190ºC, 190ºC to 25ºC (formation of amorphous Nifedipine); cycle 2: 25ºC to X (60,70,80...150ºC), X to 25ºC; cycle 3: 25ºC to 190ºC and holding isothermally for 5 min between cycles (heating/cooling rate of 10ºC/min). Results. The amorphous state Nifedipine can sustain heating up to 90ºC without significant changes in its composition. Cycle 2 of amorphous material heated up to 90ºC shows only the glass transition at ~44ºC. In cycle 3 of the same material, a glass transition has been recorded at ~44ºC, followed by two exotherms (~100 and ~115ºC (crystallisation of polymorph III and II, respectively) and an endotherm (169ºC (melting of polymorphs I/II)). Samples that have been heated to temperatures between 100ºC and 120ºC in the second cycle showed a glass transition at ~44ºC and an additional exotherm at ~95ºC (crystallisation of polymorph III) on cooling a exotherm was observed at ~40ºC (crystallisation of polymorph IV). The same material showed no glass transition in cycle 3 but an endotherm at around 62ºC (melting of polymorph IV) an exotherm (~98ºC) and an endotherm (169ºC) melting of polymorph I/II. Heating the sample to a temperatures greater than 130ºC in cycle two results in a glass transition at ~44ºC, and two exotherms at ~102 and 125ºC (crystallisation of polymorphs III and I, respectively). Conclusions. DSC data suggests that polymorph IV can only be produced from amorphous or polymorph III samples. The presence of polymorph I or II drives the conversion of the less stable polymorphic form IV into the most stable form, I. Although form IV of Nifedipine can easily be created, following defined experimental conditions, it may only coexist with amorphous or polymorph III states. When polymorphs I and II are present in the sample polymorph IV cannot be etected.
Resumo:
Freeze-dried (lyophilised) wafers and solvent cast films from sodium alginate (ALG) and sodium carboxymethylcellulose (CMC) have been developed as potential drug delivery systems for mucosal surfaces including wounds. The wafers (ALG, CMC) and films (CMC) were prepared by freeze-drying and drying in air (solvent evaporation) respectively, aqueous gels of the polymers containing paracetamol as a model drug. Microscopic architecture was examined using scanning electron microscopy, hydration characteristics with confocal laser scanning microscopy and dynamic vapour sorption. Texture analysis was employed to investigate mechanical characteristics of the wafers during compression. Differential scanning calorimetry was used to investigate polymorphic changes of paracetamol occurring during formulation of the wafers and films. The porous freeze-dried wafers exhibited higher drug loading and water absorption capacity than the corresponding solvent evaporated films. Moisture absorption, ease of hydration and mechanical behaviour were affected by the polymer and drug concentration. Two polymorphs of paracetamol were observed in the wafers and films, due to partial conversion of the original monoclinic to the orthorhombic polymorph during the formulation process. The results showed the potential of employing the freeze-dried wafers and solvent evaporated films in diverse mucosal applications due to their ease of hydration and based on different physical mechanical properties exhibited by both type of formulations.
Resumo:
Cyclo(L-Glu-L-Glu) has been crystallised in two different polymorphic forms. Both polymorphs are monoclinic, but form 1 is in space group P21 and form 2 is in space group C2. Raman scattering and FT-IR spectroscopic studies have been conducted for the N,O-protonated and deuterated derivatives. Raman spectra of orientated single crystals, solid-state and aqueous solution samples have also been recorded. The different hydrogen-bonding patterns for the two polymorphs have the greatest effect on vibrational modes with N&bond;H and C&dbond;O stretching character. DFT (B3-LYP/cc-pVDZ) calculations of the isolated cyclo(L-Glu-L-Glu) molecule predict that the minimum energy structure, assuming C2 symmetry, has a boat conformation for the diketopiperazine ring with the two L-Glu side chains being folded above the ring. The calculated geometry is in good agreement with the X-ray crystallographic structures for both polymorphs. Normal coordinate analysis has facilitated the band assignments for the experimental vibrational spectra. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
Accurate identification of stock boundaries is essential for efficient fisheries management, hence the present study focused on the genetic structure of whiting. To this aim, 488 individuals collected from the southern Bay of Biscay to the southern Norwegian coast were genotyped using seven microsatellites. A low level of genetic structuring was detected in Atlantic waters since only the Bay of Biscay differentiated from more northern samples. The lack of genetic structure along the western margin of the British Isles is consistent with a high level of passive transport of pelagic eggs and larvae due to the combined influence of the North Atlantic Current and the Shelf Edge Current. High levels of dispersal could also occur between the western British Isles and the North Sea through both the branching of the North Atlantic Current into the northern North Sea and from the residual current flowing from the English Channel to the Southern Bight. In contrast, a significant genetic structure was identified within the North Sea, and this may be associated with the complex oceanography of this basin and retention systems reducing larval dispersal. In addition, considering also genetic, phenotypic and tag-recapture data collected on whiting, a learned homing behaviour of adults toward spawning areas may be hypothesised.
Resumo:
Phenotypic variation (morphological and pathogenic characters), and genetic variability were studied in 50 isolates of seven Plasmopara halstedii (sunflower downy mildew) races 100, 300, 304, 314, 710, 704 and 714. There were significant morphological, aggressiveness, and genetic differences for pathogen isolates. However, there was no relationship between morphology of zoosporangia and sporangiophores and pathogenic and genetic characteristics for the races used in our study. Also, our results provided evidence that no relation between pathogenic traits and multilocus haplotypes may be established in P. halstedii. The hypothesis explaining the absence of relationships among phenotypic and genetic characteristics is discussed.
Resumo:
In order to clarify the role of Pl2 resistance gene in differentiation the pathogenicity in Plasmopara halstedii (sunflower downy mildew), analyses were carried out in four pathotypes: isolates of races 304 and 314 that do not overcome Pl2 gene, and isolates of races 704 and 714 that can overcome Pl2 gene. Based on the reaction for the P. halstedii isolates to sunflower hybrids varying only in Pl resistance genes, isolates of races 704 and 714 were more virulent than isolates of races 304 and 314. Index of aggressiveness was calculated for pathogen isolates and revealed the presence of significant differences between isolates of races 304 and 314 (more aggressive) and isolates of races 704 and 714 (less aggressive). There were morphological and genetic variations for the four P. halstedii isolates without a correlation with pathogenic diversity. The importance of the Pl2 resistance gene to differentiate the pathogenicity in sunflower downy mildew was discussed.
Resumo:
Sixteen species of the genus Cladonia are reported from Macaronesia from the Canary Islands. Three species are new to canarian flora and, two of them new to Macaronesia. The chemical variation of the taxa is reported. A phytogeographic distribution of the taxa with data on their habitat and ecology are presented.
Resumo:
Two key players in the Arctic and subarctic marine ecosystem are the calanoid copepods, Calanus finmarchicus and C. glacialis. Although morphologically very similar, these sibling species have different life cycles and roles in the Arctic pelagic marine ecosystem. Considering that the distribution of C. glacialis corresponds to Arctic water masses and C. finmarchicus to Atlantic water masses, the species are frequently used as climate indicators. Consequently, correct identification of the two species is essential if we want to understand climate-impacted changes on Calanus-dominated marine ecosystems such as the Arctic. Here, we present a novel morphological character (redness) to distinguish live females of C. glacialis and C. finmarchicus and compare it to morphological (prosome length) and genetic identification. The characters are tested on 300 live females of C. glacialis and C. finmarchicus from Disko Bay, western Greenland. Our analysis confirms that length cannot be used as a stand-alone criterion for separation. The results based on the new morphological character were verified genetically using a single mitochondrial marker (16S) and nuclear loci (six microsatellites and 12 InDels). The pigmentation criterion was also used on individuals (n = 89) from Young Sound fjord, northeast Greenland to determine whether the technique was viable in different geographical locations. Genetic markers based on mitochondrial and nuclear loci were corroborative in their identification of individuals and revealed no hybrids. Molecular identification confirmed that live females of the two species from Greenlandic waters, both East and West, can easily be separated by the red pigmentation of the antenna and somites of C. glacialis in contrast to the pale opaque antenna and somites of C. finmarchicus, confirming that the pigmentation criterion is valid for separation of the two species
Resumo:
There is growing interest in the mating systems of sharks and their relatives (Class Chondrichthyes) because these ancient fishes occupy a key position in vertebrate phylogeny and are increasingly in need of conservation due to widespread overexploitation. Based on precious few genetic and field observational studies, current speculation is that polyandrous mating strategies and multiple paternity may be common in sharks as they are in most other vertebrates. Here, we test this hypothesis by examining the genetic mating system of the bonnethead shark, Sphyrna tiburo, using microsatellite DNA profiling of 22 litters (22 mothers, 188 embryos genotyped at four polymorphic loci) obtained from multiple locations along the west coast of Florida. Contrary to expectations based on the ability of female S. tiburo to store sperm, the social nature of this species and the 100% multiple paternity observed in two other coastal shark species, over 81% of sampled bonnethead females produced litters sired by a single male (i.e. genetic monogamy). When multiple paternity occurred in S. tiburo, there was an indication of increased incidence in larger mothers with bigger litters. Our data suggest that sharks may exhibit complex genetic mating systems with a high degree of interspecific variability, and as a result some species may be more susceptible to loss of genetic variation in the face of escalating fishing pressure. Based on these findings, we suggest that knowledge of elasmobranch mating systems should be an important component of conservation and management programmes for these heavily exploited species.
Resumo:
Molecular marker studies reported here, involving allozymes, mitochondrial DNA and microsatellites, demonstrate that ferox brown trout Salmo trutta in Lochs Awe and Laggan, Scotland, are reproductively isolated and genetically distinct from co-occurring brown trout. Ferox were shown to spawn primarily, and possibly solely, in a single large river in each lake system making them particularly vulnerable to environmental changes. Although a low level of introgression seems to have occurred with sympatric brown trout, possibly as a result of human-induced habitat alterations and stocking, ferox trout in these two lakes meet the requirements for classification as a distinct biological, phylogenetic and morphological species. It is proposed that the scientific name Salmo ferox Jardine, 1835, as already applied to Lough Melvin (Ireland) ferox, should be extended to Awe and Laggan ferox.