753 resultados para Polymer Gel Dosimeter


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding nanoparticle diffusion within non-Newtonian biological and synthetic fluids is essential in designing novel formulations (e.g., nanomedicines for drug delivery, shampoos, lotions, coatings, paints, etc.), but is presently poorly defined. This study reports the diffusion of thiolated and PEGylated silica nanoparticles, characterized by small-angle neutron scattering, in solutions of various water-soluble polymers such as poly(acrylic acid) (PAA), poly(Nvinylpyrrolidone) (PVP), poly(ethylene oxide) (PEO), and hydroxyethylcellulose (HEC) probed using NanoSight nanoparticle tracking analysis. Results show that the diffusivity of nanoparticles is affected by their dimensions, medium viscosity, and, in particular, the specific interactions between nanoparticles and the macromolecules in solution; strong attractive interactions such as hydrogen bonding hamper diffusion. The water-soluble polymers retarded the diffusion of thiolated particles in the order PEO > PVP > PAA > HEC whereas for PEGylated silica particles retardation followed the order PAA > PVP = HEC > PEO. In the absence of specific interactions with the medium, PEGylated nanoparticles exhibit enhanced mobility compared to their thiolated counterparts despite some increase in their dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Live bacterial cells (LBC) are administered orally as attenuated vaccines, to deliver biopharmaceutical agents, and as probiotics to improve gastrointestinal health. However, LBC present unique formulation challenges and must survive gastrointestinal antimicrobial defenses including gastric acid after administration. We present a simple new formulation concept, termed Polymer Film Laminate (PFL). LBC are ambient dried onto cast acid-resistant enteric polymer films that are then laminated together to produce a solid oral dosage form. LBC of a model live bacterial vaccine and a probiotic were dried directly onto a cast film of enteric polymer. The effectiveness at protecting dried cells in a simulated gastric fluid (pH 2.0) depended on the composition of enteric polymer film used, with a blend of ethylcellulose plus Eudragit L100 55 providing greater protection from acid than Eudragit alone. However, although PFL made from blended polymers films completely released low molecular weight dye into intestinal conditions (pH 7.0), they failed to release LBC. In contrast, PFL made from Eudragit alone successfully protected dried probiotic or vaccine LBC from simulated gastric fluid for 2h, and subsequently released all viable cells within 60min of transfer into simulated intestinal fluid. Release kinetics could be controlled by modifying the lamination method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer-drug conjugates have demonstrated clinical potential in the context of anticancer therapy. However, such promising results have, to date, failed to translate into a marketed product. Polymer-drug conjugates rely on two factors for activity: (i) the presence of a defective vasculature, for passive accumulation of this technology into the tumour tissue (enhanced permeability and retention (EPR) effect) and (ii) the presence of a specific trigger at the tumour site, for selective drug release (e.g., the enzyme cathepsin B). Here, we retrospectively analyse literature data to investigate which tumour types have proved more responsive to polymer-drug conjugates and to determine correlations between the magnitude of the EPR effect and/or expression of cathepsin B. Lung, breast and ovarian cancers showed the highest response rate (30%, 47% and 41%, respectively for cathepsin-activated conjugates and 31%, 43%, 40%, across all conjugates). An analysis of literature data on cathepsin content in various tumour types showed that these tumour types had high cathepsin content (up to 3835 ng/mg for lung cancer), although marked heterogeneity was observed across different studies. In addition, these tumour types were also reported as having a high EPR effect. Our results suggest that a pre-screening of patient population could bring a more marked clinical benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review discusses the stabilization of gold nanoparticles (AuNPs) by nonionic, anionic, cationic and amphoteric polymers. The protocols used for synthesis of AuNPs in aqueous and organic solvents are described. Size, shape and morphology of AuNPs are characterized by various physicochemical methods. Application aspects of polymer-protected AuNPs in catalysis are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surfaces coated with polymer brushes in a good solvent are known to exhibit excellent tribological properties. We have performed coarse-grained equilibrium and nonequilibrium molecular dynamics (MD) simulations to investigate dextran polymer brushes in an aqueous environment in molecular detail. In a first step, we determined simulation parameters and units by matching experimental results for a single dextran chain. Analyzing this model when applied to a multichain system, density profiles of end-tethered polymer brushes obtained from equilibrium MD simulations compare very well with expectations based on self-consistent field theory. Simulation results were further validated against and correlated with available experimental results. The simulated compression curves (normal force as a function of surface separation) compare successfully with results obtained with a surface forces apparatus. Shear stress (friction) obtained via nonequilibrium MD is contrasted with nanoscale friction studies employing colloidal-probe lateral force microscopy. We find good agreement in the hydrodynamic regime and explain the observed leveling-off of the friction forces in the boundary regime by means of an effective polymer–wall attraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronically complementary, low molecular weight polymers that self-assemble through tuneable π-π stacking interactions to form extended supramolecular polymer networks have been developed for inkjet printing applications and successfully deposited using three different printing techniques. Sequential overprinting of the complementary components results in supramolecular network formation through complexation of π-electron rich pyrenyl or perylenyl chain-ends in one component with π-electron deficient naphthalene diimide residues in a chain-folding polyimide. The complementary π-π stacked polymer blends generate strongly coloured materials as a result of charge-transfer absorptions in the visible spectrum, potentially negating the need for pigments or dyes in the ink formulation. Indeed, the final colour of the deposited material can be tailored by changing varying the end-groups of the π electron rich polymer component. Piezoelectric printing techniques were employed in a proof of concept study to allow characterisation of the materials deposited, and a thermal inkjet printer adapted with imaging software enabled a detailed analysis of the ink-drops as they formed, and of their physical properties. Finally, continuous inkjet printing allowed greater volumes of material to be deposited, on a variety of different substrate surfaces, and demonstrated the utility and versatility of this novel type of ink for industrial applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-component, supramolecular polymer blend has been designed using a novel π-electron rich bisperylene- terminated polyether. This polymer is able to self-assemble through electronically complementary π–π stacking interactions with a π-electron-deficient chain-folding polydiimide to afford thermally healable polymer blends. Model compounds were developed to assess the suitability of the deep green complexes formed between perylene residues and chain-folding bis-diimides for use in polymer blends. The polymer blends thus synthesised were elastomeric in nature and demonstrated healable properties as demonstrated by scanning electron microscopy. Healing was observed to occur rapidly at ca. 75 degC, and excellent healing efficiencies were found by tensometric and rheometric analyses. These tuneable, stimuli-responsive, supramolecular polymer blends are compared to related healable blends featuring pyrene-terminated oligomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0–8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blending with a hydrogen-bonding supramolecular polymer is shown to be a successful novel strategy to induce microphase-separation in the melt of a Pluronic polyether block copolymer. The supramolecular polymer is a polybutadiene derivative with urea–urethane end caps. Microphase separation is analysed using small-angle X-ray scattering and its influence on the macroscopic rheological properties is analysed. FTIR spectroscopy provides a detailed picture of the inter-molecular interactions between the polymer chains that induces conformational changes leading to microphase separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new iron(II) coordination polymer, [FeCl2(NC7H9)2(N2C12H12)], has been synthesized under solvothermal conditions and structurally characterized by single-crystal X-ray diffraction. This material crystallizes in the monoclinic space group C2/c, with a = 11.2850(6), b = 13.8925(7), c = 17.0988(9) Å and β = 94.300(3)º (Z = 4). The crystal structure consists of neutral zig-zag chains, in which the iron(II) ions are octahedrally coordinated. The infinite polymer chains are packed into a three-dimensional structure through C–H···Cl interactions. Magnetic susceptibility measurements reveal the existence of weak antiferromagnetic interactions between the iron(II) ions. The effective magnetic moment, μ eff = 5.33 μ B , is consistent with a high-spin iron(II) configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents selected literature examples to review the development of the use of donor–acceptor π–π stacking interactions as transient cross-links in supramolecular polymer networks. The chapter examines notable examples of these highly specific and directional interactions and illustrates how they can be utilised to reliably produce functional supramolecular, self-assembled systems. Knowledge gained from these fundamental studies has enabled the design, synthesis and application of donor–acceptor stacked supramolecular motifs in non-covalent polymer networks, which is exemplified through detailing the production, physical properties and optimisation of healable materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduced photo-polymer networks into the various liquid crystalline phases of the antiferroelectric liquid crystal AS612 and studied the effects of these networks by measuring the temperature dependence of the Bragg wavelengths selectively reflected. After polymerization, the decrease in Bragg wavelengths with respect to the original values is consistent with a shorter helical pitch due to polymer network shrinkage. Also, by removing the liquid crystalline material, we are able to image the residual polymer network using scanning electron microscopy and polarized light microscopy. The polymer strands are a few microns thick and the networks show both chiral and non-chiral features.