962 resultados para Poly(methyl methacrylate) matrix
Resumo:
Background: Matrix metalloproteinase-9 (MMP-9) is involved in the degradation of the extracellular matrix during physiological and pathological processes. Two functional polymorphisms [C(-1562)T and microsatellite (CA)(13-25)] in the promoter region of the MMP-9 gene have been associated with several diseases. The aim of this study was to examine whether these MMP-9 polymorphisms and haplotypes are linked with plasma MMP-9 variations in healthy subjects. Methods: We studied 177 healthy male white volunteers (age range 20-55 years) who were non-smokers and not taking any medication. Genomic DNA was extracted from whole blood and genotypes for the C(-1562)T and the microsatellite (CA)(n) polymorphisms were determined. MMP-9 levels were measured in plasma samples by gelatin zymography. Results: The frequency of the alleles C and T for the C(-1562)T polymorphism were 90% and 10%, respectively. The frequency of the alleles with less than 21 CA repeats Q and with 21 repeats or higher (H) were 47% and 53%, respectively. We found no differences in plasma MMP-9 levels among the genotype groups or among different haplotypes (all p > 0.05). Conclusions: These findings suggest that functional polymorphisms in the promoter of the MMP-9 gene are not linked with significant plasma MMP-9 variations in healthy subjects.
Resumo:
BACKGROUND AND PURPOSE Mounting evidence implicates matrix metalloproteinase (MMP) in the vascular dysfunction and remodelling associated with hypertension. We tested the hypothesis that treatment with pyrrolidine dithiocarbamate (PDTC), which interferes with NF-kappa B-induced MMPs gene transcription, could exert antihypertensive effects, prevent MMP-2 and MMP-9 up-regulation, and protect against the functional alterations and vascular remodelling of two-kidney, one clip (2K1C) hypertension. EXPERIMENTAL APPROACH Sham-operated or hypertensive rats were treated with vehicle or PDTC (100 mg.Kg(-1).day(-1)) by gavage for 8 weeks. Systolic blood pressure (SBP) was monitored weekly. Aortic rings were isolated to assess endothelium-dependent relaxations. Quantitative morphometry of structural alterations of the aortic wall was carried out in haematoxylin/eosin sections. Formation of vascular reactive oxygen species (ROS), and inducible (i) NOS and phosphorylated-p65 NF-kappa B subunit expression were measured in the aortas. MMP-2 and MMP-9 aortic levels and gelatinolytic activity were determined by gelatin and in situ zymography and by immunofluorescence. KEY RESULTS Treatment with PDTC attenuated the increases in SBP and prevented the endothelial dysfunction associated with 2K1C hypertension. Moreover, PDTC reversed the vascular aortic remodelling, the increases in aortic ROS levels and in iNOS and phosphorylated-p65 NF-kappa B expression found in 2K1C rats. These effects were associated with attenuation of 2K1C up-regulation of aortic MMP-2 and MMP-9 levels and gelatinolytic activity. CONCLUSION AND IMPLICATIONS These findings suggest that PDTC down-regulates vascular MMPs and ameliorates vascular dysfunction and remodelling in renovascular hypertension, thus providing evidence supporting the suggestion that PDTC is probably a good candidate to be used to treat hypertension.
Resumo:
This study investigated the response of human alveolar bone-derived cells to a novel poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane. Osteoblastic cells were cultured in osteogenic conditions either on P(VDF-TrFE)/BT or polytetrafluoroethylene (PTFE) for up to 14 days. At 7 and 14 days, the mRNA expression of Runt-related transcription factor 2 (RUNX2), Type I collagen (COL I), Osteopontin (OPN), Alkaline phosphatase (ALP), Bone sialoprotein (BSP), and Osteocalcin (OC), key markers of the osteoblastic phenotype, and of Bcl2-associated X protein (Bax), B-cell CLL/lymphoma 2 (Bcl-2), and Survivin (SUR), associated with the control of the apoptotic cell death, was assayed by real-time PCR. In situ ALP activity was qualitatively evaluated by means of Fast red staining. Surface characterization was also qualitatively and quantitatively assayed in terms of topography, roughness, and wettability. Cells grown on P(VDF-TrFE)/BT exhibited a significantly higher mRNA expression for all markers compared to the ones on PTFE, except for Bcl-2, which was not detected for both groups. Additionally, Fast red staining was noticeably stronger in cultures on P(VDF-TrFE)/BT at 7 and 14 days. At micron-and submicron scale, SEM images and roughness analysis revealed that PTFE and P(VDF-TrFE)/BT exhibited a smooth topography and a similar roughness, respectively. PTFE membrane displayed higher contact angles compared with P(VDF-TrFE)/BT, as indicated by wettability assay. The novel P(VDF-TrFE)/BT membrane supports the acquisition of the osteoblastic phenotype in vitro, while up-regulating the expression of apoptotic markers. Further in vivo experiments should be carried out to confirm the capacity of P(VDF-TrFE)/BT membrane in promoting bone formation in guided bone regeneration.
Resumo:
The vascular remodeling associated with hypertension involves oxidative stress and enhanced matrix metalloproteinases (MMPs) expression/activity, especially MMP-2. While previous work showed that lercanidipine, a third-generation dihydropyridine calcium channel blocker (CCB), attenuated the oxidative stress and increased MMP-2 expression/activity in two-kidney, one-clip (2K1C) hypertension, no previous study has examined whether first- or second-generation dihydropyridines produce similar effects. We compared the effects of nifedipine, nimodipine, and amlodipine on 2K1C hypertension-induced changes in systolic blood pressure (SBP), vascular remodeling, oxidative stress, and MMPs levels/activity. Sham-operated and 2K1C rats were treated with water, nifedipine 10 mg/kg/day, nimodipine 15 mg/kg/day, or amlodipine 10 mg/kg/day by gavage, starting 3 weeks after hypertension was induced. SBP was monitored weekly. After 6 weeks of treatment, quantitative morphometry of structural changes in the aortic wall was studied in hematoxylin/eosin-stained sections. Aortic and systemic reactive oxygen species levels were measured by using dihydroethidine and thiobarbituric acid-reactive substances (TBARs), respectively. Aortic MMP-2 levels and activity were determined by gelatin zymography, in situ zymography, and immunofluorescence. Nifedipine, nimodipine, or amlodipine attenuated the increases in SBP in hypertensive rats by approximately 17% (P<0.05) and prevented vascular hypertrophy (P<0.05). These CCBs blunted 2K1C-induced increases in vascular oxidative stress and plasma TBARs concentrations (P<0.05). All dihydropyridines attenuated the increases in aortic MMP-2 levels and activity associated with 2K1C hypertension. These findings suggest lack of superiority of one particular dihydropyridine, at least with respect to antioxidant effects, MMPs downregulation, and inhibition of vascular remodeling in hypertension.
Resumo:
Background and purpose: Increased oxidative stress and up-regulation of matrix metalloproteinases (MMPs) may cause structural and functional vascular changes in renovascular hypertension. We examined whether treatment with spironolactone (SPRL), hydrochlorothiazide (HCTZ) or both drugs together modified hypertension-induced changes in arterial blood pressure, aortic remodelling, vascular reactivity, oxidative stress and MMP levels and activity, in a model of renovascular hypertension. Experimental approach: We used the two-kidney,one-clip (2K1C) model of hypertension in Wistar rats. Sham-operated or hypertensive rats were treated with vehicle, SPRL (25 mg center dot kg-1 center dot day-1), HCTZ (20 mg center dot kg-1 center dot day-1) or a combination for 8 weeks. Systolic blood pressure was monitored weekly. Aortic rings were isolated to assess endothelium-dependent and -independent relaxations. Morphometry of the vascular wall was carried out in sections of aorta. Aortic NADPH oxidase activity and superoxide production were evaluated. Formation of reactive oxygen species was measured in plasma as thiobarbituric acid-reactive substances. Aortic MMP-2 levels and activity were determined by gelatin and in situ zymography, fluorimetry and immunohistochemistry. Key results: Treatment with SPRL, HCTZ or the combination attenuated 2K1C-induced hypertension, and reversed the endothelial dysfunction in 2K1C rats. Both drugs or the combination reversed vascular aortic remodelling induced by hypertension, attenuated hypertension-induced increases in oxidative stress and reduced MMP-2 levels and activity. Conclusions and implications: SPRL or HCTZ, alone or combined, exerted antioxidant effects, and decreased renovascular hypertension-induced MMP-2 up-regulation, thus improving the vascular dysfunction and remodelling found in this model of hypertension.
Resumo:
Structural vascular changes in two-kidney, one-clip (2K-1C) hypertension may result from increased matrix metalloproteinase (MMP)-2 activity. MMP-2 activation is regulated by other MMPs, including transmembrane-MMPs, and by tissue inhibitors of MMPs (TIMPs). We have investigated the localization of MMP-2, -9, -14, and TIMPs 1-4 in hypertensive aortas and measured their levels by zymography/Western blotting and immunohistochemistry. Gelatinolytic activity was assayed in tissues by in situ zymography. Sham-operated and 2K-1C hypertensive rats were treated with doxycycline (or vehicle) for 8 weeks, and the systolic blood pressure was monitored weekly. Doxycycline attenuated 2K-1C hypertension (165 +/- 11.7 mmHg versus 213 +/- 7.9 mm Hg in hypertensive controls, P<0.01), and completely prevented increase in the thicknesses of the media and the intima in 2K-1C animals (P<0.01). Increased amounts of MMP-2, -9, and -14 were found in hypertensive aortas, as well as enhanced gelatinolytic activity. A gradient in the localization of MMP-2, -9, and -14 was found, with increased amounts detected in the intima, at sites with higher gelatinolytic activity. Doxycycline attenuated hypertension induced increases in all the 3 investigated MMPs in both the media and the intima (all P<0.05). but it did not change the amounts of TIMPs 1-4 (P>0.05). Therefore, an imbalance between increased amounts of MMPs at the tissue level without a corresponding increase in the quantities of TIMPs, particularly in the intima and inner media layers, appears to account for the increased proteolytic activity found in 2K-1C hypertension-induced maladaptive vascular remodeling. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The mm of this work was to evaluate the biocompatibility of poly(vinylidene fluoride-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT) membrane to be used in guided tissue regeneration (GTR) Fibroblasts from human periodontal ligament (hPDLF) and keratinocytes (SCC9) were plated on P(VDF-TrFE)/BT and polytetrafluorethylene membranes at a cell density of 20.000 cells well(-1) and Cultured for up to 21 days Cell morphology, adhesion and proliferation were evaluated in hPDLF and keratinocytes, while total protein content and alkaline phosphatase (ALP) activity were assayed only for hPDLF Using a higher cell density. real-time polymerase chain reaction (PCR) was performed to assess the expression of typical genes of hPDLF, such as periostin, PDLs17, S100A4 and fibromodulin, and key phenotypic markers of keratinocytes, including involucrin, keratins 1. 10 and 14 Expression of the apoptotic genes bax, bcl-2 and Survivin was evaluated for both cultures hPDLF adhered and spread more oil P(VDF-TrFE)/BT, whereas keratinocytes showed a round shape on both membranes. hPDLF adhesion was greater oil P(VDF-TrFE)/BT at 2 and 4 h, while keratinocyte adhesion was similar for both membranes. Whereas proliferation was significantly higher for hPDLF on P(VDF-TrFE)/BT at days 1 and 7. no signs of keratinocyte proliferation could be noticed for both membranes Total protein content was greater on P(VDF-TrFE)/BT at 7, 14 and 21 days, and higher levels of ALP activity were observed oil P(VDF-TrFE)/BT at 21 days. Real-time PCR revealed higher expression of phenotypic markers of hPDLF and keratinocytes as well as greater expression of apoptotic genes in cultures grown on P(VDF-TrFE)/BT. These results indicate that, by favoring hPDLF adhesion. spreading. proliferation and typical mRNA expression, P(VDF-TrFE)/BT membrane should be considered an advantageous alternative for GTR (C) 2009 Acta Materialia Inc Published by Elsevier Ltd All rights reserved
Resumo:
Nicotine plays a role in smoking-associated cardiovascular diseases, and may upregulate matrix metalloproteinase (MMP)-2 and MMP-9. We examined whether nicotine induces the release of MMP-2 and MMP-9 by rat smooth muscle cells (SMC), and whether doxycycline (non-selective MMP inhibitor) inhibits the vascular effects produced by nicotine. SMC were incubated with nicotine 0, 50, and 150 nM for 48 h. MMP-2 and MMP-9 levels in the cell supernatants were determined by gelatin zymography. The acute changes in mean arterial pressure caused by nicotine 2 mu mol/kg (or saline) were assessed in rats pretreated with doxycycline (or saline). We also examined whether doxcycline (30 mg/Kg, i.p., daily) modifies the effects of nicotine (10 mg/kg/day; 4 weeks) on the endothelium-dependent relaxations of rat aortic rings. Aortic MMP-2 levels were assessed by gelatin zymography. Aortic gelatinolytic activity was assessed using a gelatinolytic activity kit. MMP-2 and MMP-9 levels increased in the supernatant of SMC cells incubated with nicotine 150 nM (P<0.05) but not with 50 nM. Nicotine (2 mu mol/kg) produced lower increases in the mean arterial pressure in rats pretreated with doxycycline than those found in rats pretreated with saline (26 +/- 4 vs. 37 +/- 4 mmHg, respectively; P<0.05). Nicotine impaired of the endothelium-dependent responses to acetylcholine, and treatment with doxycycline increased the potency (pD2) by approximately 25% (P<0.05). While we found no significant differences in aortic MMP-2 levels, nicotine significantly increased gelatinolytic activity (P<0.05). These findings suggest that nicotine produces cardiovascular effects involving MMPs. It is possible that MMPs inhibition may counteract the effects produced by nicotine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Many studies have shown that deficits in olfactory and cognitive functions precede the classical motor symptoms seen in Parkinson`s disease (PD) and that olfactory testing may contribute to the early diagnosis of this disorder. Although the primary cause of PD is still unknown, epidemiological studies have revealed that its incidence is increased in consequence of exposure to certain environmental toxins. In this study, most of the impairments presented by C57BL/6 mice infused with a single intranasal (i.n.) administration of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (1 mg/nostril) were similar to those observed during the early phase of PD, when a moderate loss of nigral dopamine neurons results in olfactory and memory deficits with no major motor impairments. Such infusion decreased the levels of the enzyme tyrosine hydroxylase in the olfactory bulb, striatum, and substantia nigra by means of apoptotic mechanisms, reducing dopamine concentration in different brain structures such as olfactory bulb, striatum, and prefrontal cortex, but not in the hippocampus. These findings reinforce the notion that the olfactory system represents a particularly sensitive route for the transport of neurotoxins into the central nervous system that may be related to the etiology of PD. These results also provide new insights in experimental models of PD, indicating that the i.n. administration of MPTP represents a valuable mouse model for the study of the early stages of PD and for testing new therapeutic strategies to restore sensorial and cognitive processes in PD.
Resumo:
We examined whether two functional polymorphisms (g.-1562C>T and g.-90(CA)14-24) in the matrix metalloproteinase (MMP)-9 gene or MMP-9 haplotypes affect the circulating levels of pro-MMP-9 and pro-MMP-9/TIMP-1 (tissue inhibitor of metalloproteinase-1) ratios in AIDS patients, and modulate alterations in these biomarkers after highly active antiretroviral therapy (HAART). We studied 82 patients commencing HAART. Higher pro-MMP-9 concentrations and pro-MMP-9/TIMP-1 ratios were found in CT/TT patients compared with CC patients. HAART decreased pro-MMP-9 levels and pro-MMP-9/TIMP-1 ratios in CT/TT patients, it did not modify pro-MMP-9 levels and it increased pro-MMP-9/TIMP-1 ratios in CC patients. The g.-90(CA)14-24 polymorphism, however, produced no significant effects. Moreover, we found no significant differences in HAART-induced changes in plasma pro-MMP-9, TIMP-1 and pro-MMP-9/TIMP-1 ratios when different MMP-9 haplotypes were compared. These findings suggest that the g.-1562C>T polymorphism affects pro-MMP-9 levels in patients with AIDS and modulates the alterations in pro-MMP-9 levels caused by HAART, thus possibly affecting the risk of cardiovascular complications. The Pharmacogenomics Journal (2009) 9, 265-273; doi: 10.1038/tpj.2009.13; published online 21 April 2009
Resumo:
Objectives: To compare the circulating levels of matrix metalloproteinase (MMP)-8, pro-MMP-2, pro-MMP-9, and total MMP-9, their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMP)-1 and TIMP-2, and the MMP-8/TIMP-1, MMP-9/TIMP-1, and MMP-2/TIMP-2 ratios in normotensive obese children and adolescents with those found in non obese children and adolescents. Design and methods: We studied 40 obese and 40 non obese (controls) children and adolescents in this cross-sectional study. MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA. Results: Obese children and adolescents had higher circulating MMP-8 concentrations, lower plasma TIMP-1 concentrations, and higher MMP-8/TIMP-1 ratios than non obese controls (P < 0.05). We found no differences in pro-MMP-9 or total MMP-9 levels, or in MMP-9/TIMP-1 ratios between groups (P > 0.05). While we found no significant differences in pro-MMP-2 levels (P > 0.05) obese Subjects had higher TIMP-2 concentrations and lower pro-MMP-2/TIMP-2 ratios (P < 0.05) than non obese controls. Conclusions: In conclusion, we found evidence indicating higher net MMP-8 (but not MMP-9 and MMP-2) activity in childhood obesity. The increased MMP-8 levels found in obese children suggest a possibly relevant pathophysiological mechanism that may be involved in the increase of cardiovascular risk associated with childhood obesity. (c) 2009 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
Background: Metabolic syndrome (MetS) predisposes to cardiovascular complications. Increased concentrations of pro-inflammatory mediators and imbalanced concentrations of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) may reflect the pathophysiology of MetS. We compared the circulating levels of MMPs, TIMPs, and inflammatory mediators in MetS patients with those found in healthy controls. Methods: We studied 25 healthy subjects and 25 MetS patients. The plasma levels of pro-MMP-2 and pro-MMP-9 were determined by gelatin zymography. The plasma concentrations of MMP-8, MMP-3, TIMP-1, TIMP-2, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), intercellular adhesion molecule (sICAM-1), and sP-selectin were measured by ELISA kits. Results: We found higher sP-selectin, sICAM-1, MCP-1, and IL-6 (all P<0.05) concentrations in MetS patients compared with healthy controls. No differences in pro-MMP-2, MMP-3, and TIMP-2 levels were found (all P>0.05). However, we found higher pro-MMP-9, MMP-8. and TIMP-1 levels in MetS patients compared with healthy controls (all P<0.05). Conclusions: Patients with MetS have increased circulating concentrations of pro-MMP-9, MMP-8, and TIMP-1 that are associated with increased concentrations of pro-inflammatory mediators and adhesion molecules. These findings suggest that MMPs may have a role in the increased cardiovascular risk of MetS patients. Pharmacological interventions targeting MMPs, especially MMP-9 and MMP-8 deserve further investigation in MetS patients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Materials and methods: Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 mm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Results: Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. Conclusion: These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.
The Effect of TAK-778 on Gene Expression of Osteoblastic Cells Is Mediated Through Estrogen Receptor
Resumo:
This study evaluated the effect of TAK-778 [(2R, 4S)-(-)-N-(4-diethoxyphosphorylmethylphenyl)-1,2,4,5-tetrahydro-4-methyl-7,8-methylenedioxy-5-oxo-3-benzothiepin-2-carboxamide)] on in vitro osteogenic events and on gene expression of osteoblastic cells derived from human alveolar bone and the participation of estrogen receptors (ERs) on such effect. Osteoblastic cells were subcultured, with or without TAK-778 (10(-5) M), to evaluate cell growth and viability, total protein content, and alkaline phosphatase (ALP) activity at 7, 14, and 21 days; bone-like formation at 21 days; and gene expression, using cDNA microarray, at 7 days. Also, osteoblastic cells were exposed to TAK-778 (10-5 M) combined to ICI182,780, a nonspecific ER antagonist (10(-6) M), and gene expression was evaluated by real-time polymerase chain reaction (PCR) at 7 days. TAK-778 induced a reduction in culture growth and an increase in cell synthesis, ALP activity, and bone-like formation. The cDNA microarray showed genes associated with cell adhesion and differentiation, skeletal development, ossification, and transforming growth factor-P receptor signaling pathway, with a tendency to be higher expressed in cells exposed to TAK-778. The gene expression of ALP, osteocalcin, Msh homeobox 2, receptor activator of NF-kappa B ligand, and intercellular adhesion molecule 1 was increased by TAK-778 as demonstrated by real-time PCR, and this effect was antagonized by ICI182,780. The present results demonstrated that TAK-778 acts at a transcriptional level to enhance the in vitro osteogenic process and that its effect on gene expression of osteoblastic cells is mediated, at least partially, through ERs. Based on these findings, TAK-778 could be considered in the treatment of bone metabolic disorders. Exp Biol Med 234:190-199, 2009
Resumo:
Poly(L-lactic acid) (PLA) is a polymer of great technological interest, whose excellent mechanical properties, thermal plasticity and bioresorbability render it potentially useful for environmental applications, as a biodegradable plastic and as a biocompatible material in biomedicine. The interactions between an implant material surface and host cells play central roles in the integration, biological performance and clinical success of implanted biomedical devices. Osteoblasts from human alveolar bone were chosen to investigate the cell behaviour when in contact with PLA discs. Cell morphology and adhesion through osteopontin (OPN) and fibronectin (FN) expression were evaluated in the initial osteogenesis, as well as cell proliferation, alkaline phosphatase activity and bone nodule formation. It was shown that the polymer favoured cell attachment. Cell proliferation increased until 21 days but in a smaller rate when compared to the control group. On the other hand, ALP activity and bone mineralization were not enhanced by the polymer. It is suggested that this polymer favours cell adhesion in the early osteogenesis in vitro, but it does not enhance differentiation and mineralization. (C) Koninklijke Brill NV, Leiden, 2009