936 resultados para Pneumonia : Severity
Resumo:
Hereditary hemochromatosis (HH) is a common disorder of iron metabolism caused by mutation in HFE, a gene encoding an MHC class I-like protein. Clinical studies demonstrate that the severity of iron loading is highly variable among individuals with identical HFE genotypes. To determine whether genetic factors other than Hfe genotype influence the severity of iron loading in the murine model of HH, we bred the disrupted murine Hfe allele onto three different genetically defined mouse strains (AKR, C57BL/6, and C3H), which differ in basal iron status and sensitivity to dietary iron loading. Serum transferrin saturations (percent saturation of serum transferrin with iron), hepatic and splenic iron concentrations, and hepatocellular iron distribution patterns were compared for wild-type (Hfe +/+), heterozygote (Hfe +/−), and knockout (Hfe −/−) mice from each strain. Although the Hfe −/− mice from all three strains demonstrated increased transferrin saturations and liver iron concentrations compared with Hfe +/+ mice, strain differences in severity of iron accumulation were striking. Targeted disruption of the Hfe gene led to hepatic iron levels in Hfe −/− AKR mice that were 2.5 or 3.6 times higher than those of Hfe −/− C3H or Hfe −/− C57BL/6 mice, respectively. The Hfe −/− mice also demonstrated strain-dependent differences in transferrin saturation, with the highest values in AKR mice and the lowest values in C3H mice. These observations demonstrate that heritable factors markedly influence iron homeostasis in response to Hfe disruption. Analysis of mice from crosses between C57BL/6 and AKR mice should allow the mapping and subsequent identification of genes modifying the severity of iron loading in this murine model of HH.
Resumo:
Hereditary hemochromatosis (HH) is a common chronic human genetic disorder whose hallmark is systemic iron overload. Homozygosity for a mutation in the MHC class I heavy chain paralogue gene HFE has been found to be a primary cause of HH. However, many individuals homozygous for the defective allele of HFE do not develop iron overload, raising the possibility that genetic variation in modifier loci contributes to the HH phenotype. Mice deficient in the product of the β2-microglobulin (β2M) class I light chain fail to express HFE and other MHC class I family proteins, and they have been found to manifest many characteristics of the HH phenotype. To determine whether natural genetic variation plays a role in controlling iron overload, we performed classical genetic analysis of the iron-loading phenotype in β2M-deficient mice in the context of different genetic backgrounds. Strain background was found to be a major determinant in iron loading. Sex played a role that was less than that of strain background but still significant. Resistance and susceptibility to iron overload segregated as complex genetic traits in F1 and back-cross progeny. These results suggest the existence of naturally variant autosomal and Y chromosome-linked modifier loci that, in the context of mice genetically predisposed by virtue of a β2M deficiency, can profoundly influence the severity of iron loading. These results thus provide a genetic explanation for some of the variability of the HH phenotype.
Resumo:
The role of nitric oxide (NO) in the pathogenesis of influenza virus-induced pneumonia in mice was investigated. Experimental influenza virus pneumonia was produced with influenza virus A/Kumamoto/Y5/67(H2N2). Both the enzyme activity of NO synthase (NOS) and mRNA expression of the inducible NOS were greatly increased in the mouse lungs; increases were mediated by interferon gamma. Excessive production of NO in the virus-infected lung was studied further by using electron spin resonance (ESR) spectroscopy. In vivo spin trapping with dithiocarbamate-iron complexes indicated that a significant amount of NO was generated in the virus-infected lung. Furthermore, an NO-hemoglobin ESR signal appeared in the virus-infected lung, and formation of NO-hemoglobin was significantly increased by treatment with superoxide dismutase and was inhibited by N(omega)-monomethyl-L-arginine (L-NMMA) administration. Immunohistochemistry with a specific anti-nitrotyrosine antibody showed intense staining of alveolar phagocytic cells such as macrophages and neutrophils and of intraalveolar exudate in the virus-infected lung. These results strongly suggest formation of peroxynitrite in the lung through the reaction of NO with O2-, which is generated by alveolar phagocytic cells and xanthine oxidase. In addition, administration of L-NMMA resulted in significant improvement in the survival rate of virus-infected mice without appreciable suppression of their antiviral defenses. On the basis of these data, we conclude that NO together with O2- which forms more reactive peroxynitrite may be the most important pathogenic factors in influenza virus-induced pneumonia in mice.
Resumo:
Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor beta 1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor beta 1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.
Resumo:
Funding: This work was supported by funding awards to Dr Isabel Crane from the National Eye Research Centre, Bristol, UK (Grant ref. SCIAD 058); and NHS Grampian Endowment Trust (Grant ref. 10/16). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Resumo:
Widely held clinical assumptions about self-harming eating disorder patients were tested in this project. Specifically, the present study had two aims: (1) to confirm research that suggests patients with self-injurious behavior exhibit greater severity in eating disorder symptomology; and (2) to document the treatment course for these patients (e.g. reported change in eating disorder attitudes, beliefs, and behaviors) from admission to discharge. Data from 43 participants who received treatment at a Partial Hospitalization Program (PHP) for Eating Disorders were used in the current study. The length of treatment required for study inclusion reflected mean lengths of stay (Williamson, Thaw, & Varnardo-Sullivan, 2001) and meaningful treatment lengths in prior research (McFarlane et al., 2013; McFarlane, Olmsted, & Trottier, 2008): five to eight weeks. Scores on the Eating Disorder Inventory-III (Garner, 2004) at the time of admission and discharge were compared. These results suggest that there are no significant differences between eating disordered patients who engage in self-injury and those who do not in terms of symptom severity or pathology at admission. The results further suggest that patients in both groups see equivalent reductions in symptoms from admission to discharge across domains and also share non-significant changes in emotional dysregulation over the course of treatment. Importantly, these results also suggest that general psychological maladjustment is higher at discharge for eating disordered patients who engage in self-injury.
Resumo:
PURPOSE: We sought to analyze whether the sociodemographic profile of battered women varies according to the level of severity of intimate partner violence (IPV), and to identify possible associations between IPV and different health problems taking into account the severity of these acts. METHODS: A cross-sectional study of 8,974 women (18-70 years) attending primary healthcare centers in Spain (2006-2007) was performed. A compound index was calculated based on frequency, types (physical, psychological, or both), and duration of IPV. Descriptive and multivariate procedures using logistic regression models were fitted. RESULTS: Women affected by low severity IPV and those affected by high severity IPV were found to have a similar sociodemographic profile. However, divorced women (odds ratio [OR], 8.1; 95% confidence interval [CI], 3.2-20.3), those without tangible support (OR, 6.6; 95% CI, 3.3-13.2), and retired women (OR, 2.7; 95% CI, 1.2-6.0) were more likely to report high severity IPV. Women experiencing high severity IPV were also more likely to suffer from poor health than were those who experienced low severity IPV. CONCLUSIONS: The distribution of low and high severity IPV seems to be influenced by the social characteristics of the women involved and may be an important indicator for estimating health effects. This evidence may contribute to the design of more effective interventions.
Resumo:
This study analyses the effect of successional stage after farmland terrace abandonment on post-fire plant recovery in a Mediterranean landscape. Specific objectives of the study were to (1) compare fuel characteristics and fire severity in three successional stages after farmland abandonment – dry grassland, dense shrubland and pine stands; (2) analyse the effect of pre-fire successional stage and fire severity on vegetation recovery and (3) analyse the relative vulnerability (i.e. potential for ecosystem shift and soil degradation) to wildfires of the successional stages. We assessed 30 abandoned terraces (15 unburned and 15 burned), with diverse successional stages, on the Xortà Range (south-east Spain). Post-fire recovery was measured 1, 4 and 7 years after fire. The successional stages varied in aboveground biomass, litter amount, vertical structure and continuity of plant cover, and flammability. Dry grassland showed the lowest fire severity, whereas no differences in severity were found between shrubland and pine stands. One year after fire, plant cover was inversely related to fire severity; this relationship attenuated with time after fire. Post-fire recovery of pine stands and shrubland led in both cases to shrublands, contributing to landscape homogenisation. The pine stands showed the largest changes in composition due to fire and the lowest post-fire plant recovery – a sign of high vulnerability to fire.