829 resultados para Plastic pipes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is concerned with the use of the cross correlation technique to measure delay time between two simulated signals displaced with respect to time, in order to develop a cross correlator system that will be used to measure the water and oil pipes flowrate in which the detection system is composed by two external low intensity radiation sources located along the tube and two NaI(Tl) gamma-ray detectors. The final purpose of the correlator system is to use the natural disturbances, as the turbulence in the own flow rather than to inject radioactive tracers to the fluid flow as usually is carried out. In the design of this correlator is evaluated the point-by-point calculation method for the cross correlation function in order to produce a system accurate and fast. This method is divided at the same time in three modes of operation: direct, relay and polarity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method is presented for evaluating the stress intensity factor of part-through cracks in a thin pipe elbow. A hybrid formulation solution is used to evaluate the stress field close to the crack area. The stress field values are then inputted into a previously developed method published in the literature to evaluate the stress intensity factor in cylindrical shells. Results from cylindrical shells with part-through cracks are extended to double-curvature pipe configurations that contain the same kind of flaw.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coupled map lattices (CML) can describe many relaxation and optimization algorithms currently used in image processing. We recently introduced the ‘‘plastic‐CML’’ as a paradigm to extract (segment) objects in an image. Here, the image is applied by a set of forces to a metal sheet which is allowed to undergo plastic deformation parallel to the applied forces. In this paper we present an analysis of our ‘‘plastic‐CML’’ in one and two dimensions, deriving the nature and stability of its stationary solutions. We also detail how to use the CML in image processing, how to set the system parameters and present examples of it at work. We conclude that the plastic‐CML is able to segment images with large amounts of noise and large dynamic range of pixel values, and is suitable for a very large scale integration(VLSI) implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A perineal hernia is defined as a protrusion of peritoneal or extraperitoneal content through a pelvic floor defect. A 64-year-old woman with a bowel occlusions due to a giant postoperative perineal hernia was admitted to our hospital. We describe abdominal approach with plastic perineal reconstruction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current project assesses potential molten alloy anodes for Solid Oxide Fuel Cells (SOFC) running on solid waste. A detailed phase diagram study was performed to locate probable anode systems. The molten metal oxide system PbO-Sb2O3 was selected as a possible molten alloy anode for this application. A detailed vapour pressure study of this system was performed. Several cells were fabricated to experimentally assess the electrochemical properties of this system. The work reveals several unexpected limiting features such as the incompatibility between the platinum and the chosen alloy. A second cell was built, this time using rhenium wires instead, preventing such reaction. However, the rhenium wire sublimes under oxidizing conditions (air) and the sealing glass and the chosen alloy system react with each other under long term use. Considering all these issues, a third cell design was conceived, surpassing some obstacles and providing some initial information regarding the electrochemical behaviour. The current project shows that many parameters need to be taken into account to ensure materials compatibility. For the PbOSb2O3 system, the high volatility of Sb2O3 was a serious limitation that can only be addressed through the application of new contact wires or sealing materials and conditions. Nonetheless, the project highlights several other potential systems that can be considered, such as Pb11Ge3O17, Pb3GeO5, Pb5Ge3O11, Bi2CuO4, Bi2PdO4, Bi12GeO20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis work deals with a mathematical description of flow in polymeric pipe and in a specific peristaltic pump. This study involves fluid-structure interaction analysis in presence of complex-turbulent flows treated in an arbitrary Lagrangian-Eulerian (ALE) framework. The flow simulations are performed in COMSOL 4.4, as 2D axial symmetric model, and ABAQUS 6.14.1, as 3D model with symmetric boundary conditions. In COMSOL, the fluid and structure problems are coupled by monolithic algorithm, while ABAQUS code links ABAQUS CFD and ABAQUS Standard solvers with single block-iterative partitioned algorithm. For the turbulent features of the flow, the fluid model in both codes is described by RNG k-ϵ. The structural model is described, on the basis of the pipe material, by Elastic models or Hyperelastic Neo-Hookean models with Rayleigh damping properties. In order to describe the pulsatile fluid flow after the pumping process, the available data are often defective for the fluid problem. Engineering measurements are normally able to provide average pressure or velocity at a cross-section. This problem has been analyzed by McDonald's and Womersley's work for average pressure at fixed cross section by Fourier analysis since '50, while nowadays sophisticated techniques including Finite Elements and Finite Volumes exist to study the flow. Finally, we set up peristaltic pipe simulations in ABAQUS code, by using the same model previously tested for the fl uid and the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the behavior of granular crystals subjected to impact loading that creates plastic deformation at the contacts between constituent particles. Granular crystals are highly periodic arrangements of spherical particles, arranged into densely packed structures resembling crystals. This special class of granular materials has been shown to have unique dynamics with suggested applications in impact protection. However, previous work has focused on very low amplitude impacts where every contact point can be described using the Hertzian contact law, valid only for purely elastic deformation. In this thesis, we extend previous investigation of the dynamics of granular crystals to significantly higher impact energies more suitable for the majority of applications. Additionally, we demonstrate new properties specific to elastic-plastic granular crystals and discuss their potential applications as well. We first develop a new contact law to describe the interaction between particles for large amplitude compression of elastic-plastic spherical particles including a formulation for strain-rate dependent plasticity. We numerically and experimentally demonstrate the applicability of this contact law to a variety of materials typically used in granular crystals. We then extend our investigation to one-dimensional chains of elastic-plastic particles, including chains of alternating dissimilar materials. We show that, using the new elastic-plastic contact law, we can predict the speed at which impact waves with plastic dissipation propagate based on the material properties of the constituent particles. Finally, we experimentally and numerically investigate the dynamics of two-dimensional and three-dimensional granular crystals with elastic-plastic contacts. We first show that the predicted wave speeds for 1D granular crystals can be extended to 2D and 3D materials. We then investigate the behavior of waves propagating across oblique interfaces of dissimilar particles. We show that the character of the refracted wave can be predicted using an analog to Snell's law for elastic-plastic granular crystals and ultimately show how it can be used to design impact guiding "lenses" for mitigation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo examinou as respostas de estresse de juvenis de pirarucu transportados em sistema fechado. Pirarucu (Arapaima gigas) é um peixe nativo da bacia Amazônica, da família Osteoglossidae que possui respiração aérea obrigatória. Foi realizado um transporte de curta duração (6 h) em sacos de polietileno inflados com ar atmosférico (grupo ar) ou com oxigênio puro (grupo oxi). O oxigênio dissolvido foi o único parâmetro de qualidade da água que apresentou diferença estatística entre os grupos, e como esperado, o oxigênio estava supersaturado para o grupo oxi. Não houve mortalidade após o transporte em ambos os grupos. Os peixes se alimentaram 36 h após o transporte e apresentaram um consumo de ração habitual após 72 h. As respostas fisiológicas foram semelhantes nos dois grupos. O cortisol não apresentou mudança significativa durante o período de amostragem. Ao contrário da maioria das espécies, os valores de cortisol se apresentaram inalterados nos dois grupos durante a amostragem, enquanto a glicose teve um aumento significativo até 12 h após o transporte. Os resultados mostram que o transporte de pirarucu em sacos de polietileno pode ser realizado com ar atmosférico ou oxigênio puro, uma vez que as respostas de estresse, a qualidade da água e o comportamento alimentar após 36 h foram similar entre os grupos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this project is to learn the necessary steps to create a finite element model, which can accurately predict the dynamic response of a Kohler Engines Heavy Duty Air Cleaner (HDAC). This air cleaner is composed of three glass reinforced plastic components and two air filters. Several uncertainties arose in the finite element (FE) model due to the HDAC’s component material properties and assembly conditions. To help understand and mitigate these uncertainties, analytical and experimental modal models were created concurrently to perform a model correlation and calibration. Over the course of the project simple and practical methods were found for future FE model creation. Similarly, an experimental method for the optimal acquisition of experimental modal data was arrived upon. After the model correlation and calibration was performed a validation experiment was used to confirm the FE models predictive capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing turbines for either aerospace or power production is a daunting task for any heat transfer scientist or engineer. Turbine designers are continuously pursuing better ways to convert the stored chemical energy in the fuel into useful work with maximum efficiency. Based on thermodynamic principles, one way to improve thermal efficiency is to increase the turbine inlet pressure and temperature. Generally, the inlet temperature may exceed the capabilities of standard materials for safe and long-life operation of the turbine. Next generation propulsion systems, whether for new supersonic transport or for improving existing aviation transport, will require more aggressive cooling system for many hot-gas-path components of the turbine. Heat pipe technology offers a possible cooling technique for the structures exposed to the high heat fluxes. Hence, the objective of this dissertation is to develop new radially rotating heat pipe systems that integrate multiple rotating miniature heat pipes with a common reservoir for a more effective and practical solution to turbine or compressor cooling. In this dissertation, two radially rotating miniature heat pipes and two sector heat pipes are analyzed and studied by utilizing suitable fluid flow and heat transfer modeling along with experimental tests. Analytical solutions for the film thickness and the lengthwise vapor temperature distribution for a single heat pipe are derived. Experimental tests on single radially rotating miniature heat pipes and sector heat pipes are undertaken with different important parameters and the manner in which these parameters affect heat pipe operation. Analytical and experimental studies have proven that the radially rotating miniature heat pipes have an incredibly high effective thermal conductance and an enormous heat transfer capability. Concurrently, the heat pipe has an uncomplicated structure and relatively low manufacturing costs. The heat pipe can also resist strong vibrations and is well suited for a high temperature environment. Hence, the heat pipes with a common reservoir make incorporation of heat pipes into turbo-machinery much more feasible and cost effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μϵ for SOFBG embedded in ABS, 0.38 pm/μμ for POFBG in PLA, and 0.15 pm/μμ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine plastic pollution is rapidly growing and is a source of major concern. Seabirds often ingest plastic debris and are increasingly used as biological monitors of plastic pollution. However, virtually no studies have assessed plastics in seabirds in the deep subtropical North Atlantic. We investigated whether remains of white-faced storm-petrels (WFSP) present in gull pellets could be used for biomonitoring. We analysed 263 pellets and 79.0% of these contained plastic debris originating in the digestive tract of WFSP. Pellets with no bird prey did not contain plastics. Most debris were fragments (83.6%) with fewer plastic pellets (8.2%). Light-coloured plastics predominated (71.0%) and the most frequent polymer was HDPE (73.0%). Stable isotopes in toe-nails of WFSP containing many versus no plastics did not differ, indicating no individual specialisation leading to differential plastic ingestion. We suggest WFSP in pellets are highly suitable to monitor the little known pelagic subtropical Northeast Atlantic.