996 resultados para Plant-microbe ineractions
Resumo:
Several possible methods of increasing the efficiency and power of hydro power plants by improving the flow passages are investigated in this stydy. The theoretical background of diffuser design and its application to the optimisation of hydraulic turbine draft tubes is presented in the first part of this study. Several draft tube modernisation projects that have been carried out recently are discussed. Also, a method of increasing the efficiency of the draft tube by injecting a high velocity jet into the boundary layer is presented. Methods of increasing the head of a hydro power plant by using an ejector or a jet pump are discussed in the second part of this work. The theoretical principles of various ejector and jet pump types are presented and four different methods of calculating them are examined in more detail. A self-made computer code is used to calculate the gain in the head for two example power plants. Suitable ejector installations for the example plants are also discussed. The efficiency of the ejector power was found to be in the range 6 - 15 % for conventional head increasers, and 30 % for the jet pump at its optimum operating point. In practice, it is impossible to install an optimised jet pump with a 30 % efficiency into the draft tube as this would considerabely reduce the efficiency of the draft tube at normal operating conditions. This demonstrates, however, the potential for improvement which lies in conventional head increaser technology. This study is based on previous publications and on published test results. No actual laboratory measurements were made for this study. Certain aspects of modelling the flow in the draft tube using computational fluid dynamics are discussed in the final part of this work. The draft tube inlet velocity field is a vital boundary condition for such a calculation. Several previously measured velocity fields that have successfully been utilised in such flow calculations are presented herein.
Resumo:
To survive and complete their life cycle, herbivorous insects face the difficult challenge of coping with the arsenal of plant defences. A new study reports that aphids secrete evolutionarily conserved cytokines in their saliva to suppress host immune responses.
Resumo:
This study aims at understanding the evolutionary processes at work in specialized species interactions. Prom the macroevolutionary perspective, coevolution among specialized taxa was proposed to be one of the major processes generating biodiversity. We challenge this idea from the theoretical and practical perspective and through a literature review and show that the major hypotheses linking coevolutionary process with macroevolutionary patterns do not necessarily predict lineage co diversification and parallel speciation, limit¬ing the utility of the comparative phylogenenetic approach for investigating coevolution¬ary processes. We also point to the rarity of observed long-term coevolutionary dynamics among lineages and propose that coevolution rather occurs in shorter timescales, followed by ecological fitting. Prom the empirical point, we focus on the nursery pollination interaction between the European globeflower Trollius europaeus (Ranunculaceae) and its associated Chiastocheta flies (Anthomyiidae; Diptera) as a model system of evolution and maintenance of special¬ized interactions. The flies are obligate parasites of the seeds, but also pollinate the plant - it was thus proposed that both species are mutually dependent. Contrasting with the paradigm used for two decades of research on this system, we show that the female fitness component of the plant is similar in the populations with and without Chiastocheta. The plant is thus not exclusively dependent on the flies for reproduction. We discuss this result in the context of the factors responsible for the evolution of mutualistic systems. Understanding the evolution of a biological system requires understanding of its phylo- genetic context. Previous studies showed large mismatch between mtDNA phylogeny and morphological taxonomy in Chiastocheta. By using a large set of RAD-sequencing loci, we delineate the species limits that are congruent with morphology, and show that the discordance is best explained by the scenario of mitochondrial capture among fly species. Finally, we examine this system from a phylogeographic perspective, and identify the lack of congruence in spatial genetic structures of the plant and associated insects across their whole geographic range. The flies show lower numbers of spatial genetic groups than the plant, indicating that not all of the plant réfugia were shared by all the fly species or that the migration dynamics homogenized some of the groups. The incongruence in spatial genetic patterns indicates that fly migrations were largely independent from the genetic background of the plant, following rather a scenario of resource tracking, without the signature of coevolutionary process at this scale. Indeed, while the flies require the plant to survive climatic oscillations, the opposite is not true. Eventually, we show that there is no phylogenetic signal of spatial genetic structures, meaning that neither histories nor life- history traits are shared among closely related species and that species are characterized by unique trajectories of their genes. -- Cette étude vise à comprendre les processus évolutifs à l'oeuvre au sein d'interactions en¬tre espèces spécialisées. Du point de vue macroévolutif, la coévolution entre les taxons spécialisée a été considérée comme l'un des principaux processus générateur de biodiversité. Nous contestons cette idée du point de vue théorique et pratique à travers une revue de la littérature. Nous montrons que les hypothèses majeures reliant les processus coévolutifs avec les patterns de diversité au niveau macroévolutif ne prédisent pas nécessairement la co- diversification des lignées et leur spéciation parallèle, ce qui limite l'utilité de l'approche de phylogénie comparative pour étudier les processus coévolutifs . Nous rappelons également le peu d'exemples de dynamique coévolutive à long terme et proposons que la coévolution se produit plutôt dans des intervalles courts, suivis d'ajustements écologiques. Du point empirique, nous nous concentrons sur l'interaction de pollinisation entre le Trolle d'Europe Trollius europaeus (Ranunculaceae) et ses pollinisateurs associés, du genre Chiastocheta (Anthomyiidae; Diptera) en tant que système-modèle pour étudier l'évolution et le maintien des interactions spécialisées. Les mouches sont des parasites obligatoires des semences, mais pollinisent également la plante. Il a donc été proposé que les deux espèces soient mutuellement dépendantes. Contrastant avec le paradigme utilisé pendant deux décennies de recherche sur ce système, nous montrons, que la composante de fitness femelle de la plante est similaire dans les populations avec et sans Chiastocheta. La plante ne dépend donc pas exclusivement de son interaction avec les mouches pour la reproduction. Nous discutons de ce résultat dans le contexte des facteurs responsables de l'évolution des systèmes mutualistes. Comprendre l'évolution d'un système biologique nécessite la compréhension de son con- texte phylogénétique. Des études antérieures ont montré, chez Chiastocheta, de grandes disparités entre les phylogénies obtenues à partir d'ADN mitochondrial et la taxonomie basée sur les critères morphologiques. En utilisant un grand nombre de loci obtenus par RAD-sequencing, nous traçons les limites des espèces, qui concordent avec les car¬actéristiques morphologies, et montrons que la discordance s'explique en fait par un scénario de capture mitochondriale entre espèces de mouches. Enfin, nous examinons le système d'un point de vue phylogéographique, et identi¬fions les incohérences entre structurations génétiques spatiales de la plante et des insectes associés dans toute leur aire de distribution géographique. Les mouches présentent un nombre de groupes génétiques inférieur à la plante, indiquant que tous les refuges de la plante n'étaient pas partagés par toutes les espèces de mouches ou que les dynamiques migratoires ont homogénéisés certains des groupes chez les mouches. Les différences ob¬servées dans les patrons de structuration génétique spatiale indique que les migrations et dispersions des mouches ont été indépendantes du contexte génétique de la plante, et ces dernières ont été uniquement tributaires de la disponibilité des ressources, sans qu'il n'y ait de signature du processus de coévolution à cette échelle. En effet, tandis que les mouches ont besoin de la plante pour survivre aux oscillations climatiques, le contraire n'est pas exact. Finalement, nous montrons qu'il n'y a pas de signal phylogénétique des structurations génétiques spatiales chez les mouches, ce qui signifie que ni l'histoire, ni les traits d'histoire de vie ne sont partagés entre les espèces phylogénétiquement proches et que les espèces sont caractérisées par des trajectoires uniques de leurs gènes.
Resumo:
Since Ehrlich & Raven's seminal paper 50 years ago, coevolution has been seen as a major driver of species diversification. Here, we review classical and more recent case studies on the coevolution of plants and associated insects, to examine whether the coevolutionary component holds as an explanation of their current diversity. We discuss the main dogmas in coevolution and argue that coevolutionary processes should not be considered as major drivers of diversification in plants and insects. Instead, we suggest that coevolution essentially occurs through relatively short 'interludes', making the pattern difficult to detect. We also criticize the use of comparative phylogenetics to investigate coevolutionary processes, as coevolution may not necessarily produce congruent phylogenies among interacting lineages and, in turn, other processes may produce patterns of codivergence. Finally, we propose new lines of investigation for future research.
Resumo:
Plant microRNAs (miRNAs) are important regulatory switches. Recent advances have revealed many regulatory layers between the two essential processes, miRNA biogenesis and function. However, how these multilayered regulatory processes ultimately control miRNA gene regulation and connects miRNAs and plant responses with the surrounding environment is still largely unknown. In this opinion article, we propose that the miRNA pathway is highly dynamic and plastic. The apparent flexibility of the miRNA pathway in plants appears to be controlled by a number recently identified proteins and poorly characterized signaling cascades. We further propose that altered miRNA accumulation can be a direct consequence of the rewiring of interactions between proteins that function in the miRNA pathway, an avenue that remains largely unexplored.
Resumo:
Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly invasive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestrial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distribution modelling to test for a region effect on each species' climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with strictly disjunct populations and 58 species (16%) of the 358 species with distant populations showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic-alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000-15,000 years. Therefore, the basic assumption of species distribution models that a species' climatic niche is constant in space and time - at least on time scales 104 years or less - seems to be largely valid for arctic-alpine plants.
Resumo:
Compelling evidence indicates the participation of polyamines in abiotic and biotic stress responses in plants. Indeed, genetic engineering of polyamine levels in plants has successfully improved biotic and abiotic stress resistance in model plants and crops. We anticipate that many of the current challenges in agriculture to cope with climate change and maintain nutritional quality of fruits and vegetables can be approached by considering the polyamine pathway...
Resumo:
Ceramic vessels and milling stones are important components of the archaeological record in several Nuraghi from the Pranemuru Plateau (Sardinia). To obtain information on the possible uses of the milling stones and the content vessels is of great interest to understand the economical activities carried out in these sites by these populations. One of the approaches to obtain information on the plant uses was the phytolith analyses of the sediment adhered both to the surface of the milling stones and to the surface of the vessel content. In total we analyzed eleven archaeological samples and two control samples collected from five different Nuraghi in the Pranemuru Plateau (Nuoro Province, Sardinia). The Nuraghi were located in an area of 10 km radius from nuraghe Arrubiu and were chronologically ascribed to the Bronze Age and one site -Pranu Illixi- to the Iron Age.
Resumo:
We advocate the advantage of an evolutionary approach to conservation biology that considers evolutionary history at various levels of biological organization. We review work on three separate plant taxa, spanning from one to multiple decades, illustrating extremes in metapopulation functioning. We show how the rare endemics Centaurea corymbosa (Clape Massif, France) and Brassica insularis in Corsica (France) may be caught in an evolutionary trap: disruption of metapopulation functioning due to lack of colonization of new sites may have counterselected traits such as dispersal ability or self-compatibility, making these species particularly vulnerable to any disturbance. The third case study concerns the evolution of life history strategies in the highly diverse genus Leucadendron of the South African fynbos. There, fire disturbance and the recolonization phase after fires are so integral to the functioning of populations that recruitment of new individuals is conditioned by fire. We show how past adaptation to different fire regimes and climatic constraints make species with different life history syndromes more or less vulnerable to global changes. These different case studies suggest that management strategies should promote evolutionary potential and evolutionary processes to better protect extant biodiversity and biodiversification.
Resumo:
Gram-negative bacteria represent a major group of pathogens that infect all eukaryotes from plants to mammals. Gram-negative microbe-associated molecular patterns include lipopolysaccharides and peptidoglycans, major immunostimulatory determinants across phyla. Recent advances have furthered our understanding of Gram-negative detection beyond the well-defined pattern recognition receptors such as TLR4. A B-type lectin receptor for LPS and Lysine-motif containing receptors for peptidoglycans were recently added to the plant arsenal. Caspases join the ranks of mammalian cytosolic immune detectors by binding LPS, and make TLR4 redundant for septic shock. Fascinating bacterial evasion mechanisms lure the host into tolerance or promote inter-bacterial competition. Our review aims to cover recent advances on bacterial messages and host decoding systems across phyla, and highlight evolutionarily recurrent strategies.
Resumo:
The light spectrum perceived by plants is affected by crowding, which results in the shade avoidance syndrome (SAS). Findings presented by Pedmale et al. bring cryptochromes to the forefront of SAS and elucidate a fascinating molecular crosstalk between photoreceptor systems operating in different wavebands.