993 resultados para Placer deposits
Resumo:
Prof. H. H. W. Menard has brought together nearly all that was known of the Pacific geology in the early 1960s. His book contains a particular chapter on manganese nodules giving a stimulating review of the features and processes known to govern their distribution and chemical composition.
Resumo:
Baltic sediments have been studied by Behrens, Munthe, Küppers, Spethmann, Apstein, Sjöstedt, Pratje and the writer. The following types of sediments have been observed: varved and non-varved late-glacial clays, gray and black, post-glacial muds, and sands. The organic content of late-glacial clays ordinarily is less than 1.3 per cent, and of post-glacial muds more than 3 per cent. Sediments containing intermediate quantities are scarce. This can be explained as a result of the changed balance between organic and inorganic sedimentation when the glacial period ended; the abundance of fresh detritus then suddenly ceased and inorganic sedimentation became very much slower than before; consequently, the relative amount of organic detritus increased. As most of the material was not subjected to biological analysis, it has not been possible to distinguish different ages among post-glacial sediments.
Resumo:
The cores and dredges described at this site were taken on the RIDA cruise from 1 May until 25 May 1984 by the Muséum National d'Histoire Naturelle from the R/V Marion Dufresne. A total of 45 cores and dredges were recovered along with underwater camera runs. They are available at MNHN for sampling and study.
Resumo:
Captain Wharton, the Hydrographer of the Admiralty sent to the author a series of the deposit-samples collected in the Indian and Antarctic Oceans during the expeditions in 1887 of H.M.S. Flying Fish, H.M.S. Egeria and H.M.S. Investigator. These deposits were submitted to careful microscopical examination and chemical analysis.
Resumo:
The studied material was taken from Central Indian Ocean central, during the "TRANSINDIK" campaign of the R/V Valdivia. The campaign was conducted from 14 December 1973 until 23 January 1974, between Beira (Mozambique) and Singapore via Port Louis (Mauritius). The samples were taken on 14 stations aligned on a profile trending West, following approximately the 15th parallel (south). This profile cuts through the Mascarene plateau Basin. The preliminary study presented in this report was carried out as part of a study into the genesis and diagenesis the ocean deposits of the central and southern areas of the Indian Ocean (Laboratoire de GÈologie du MusÈum d'Histoire Naturelle - R.C.P. 212) and under the CNEXO No. 74/1017 contract. The data collected supplements the results of the OSIRIS campaign (R/V Marion Dufresne - TAAF) concerning relations existing between morphostructure and sedimentation and, more particularly, the nature and age of metalliferous deposits associated with Mn concretions.
Resumo:
On Vermilion Sea Expedition two research vessels among which the R/V Spencer F. Baird conducted a geological and geophysical exploration of the Gulf of California from February to May, 1959. Support was obtained from the Office of Naval Research and the Bureau of Ships of the U. S. Navy and from a grant of the American Petroleum Institute. Study of the canyons was one feature of the first part of the expedition. Submarine canyon studies were directed by Francis P. Shepard, Professor of Submarine Geology, aboard the research vessel Spencer F. Baird. The expedition found that the narrow channel between Angel de la Guarda Island, toward the head of the Gulf, and the peninsula is scoured almost free of sediments by strong currents. On the other side of Angel de la Guarda Island, between it and the mainland, one of the dredge hauls brought up a manganese nodule. It came from a depth of approximately 1500 feet. This is the shallowest water in which the nodules have been found. Studies have been under way some time on the feasibility of mining such nodules from the sea floor. They contain cobalt, nickel, copper and other valuable metals. (also in, Scripps Institution of Oceanography Vermilion Sea Expedition to the Gulf of California, http://library.ucsd.edu/dc/object/bb34484017)
Resumo:
The cores and dredges described in this report were taken on Cruise 16 of the R.R.S. "Discovery" from January until May 1967 by the National Institute of Oceanography, Wormley, United Kingdom. A total of 73 cores and dredges were recovered and are available through the British Oceanographic Data Centre for sampling and study.
Resumo:
The author is summarising the marine deposits of the south-west Pacific from a total of 773 samples taken during cruises of hms Challenger in 1874; USS Tuscarora and USS Enterprise in 1875 and 1876; HMS Egeria in 1888, 1889, and 1890; HMS Penguin in 1894, 1895, and 1896; and HMS Waterwitch in 1895.
Resumo:
Basalts from the base of a small seamount on ~1.5-m.y.-old crust west of the East Pacific Rise (EPR) at 9°N are intermediate in chemical and isotopic composition between light-rare-earth-element-depleted tholeiite (normal midocean ridge basalt (MORB)) and alkali basalt. Like oceanic alkali basalt, these rocks contain significantly more Ba, K, P, Sr, Ti, U, and Zr than normal MORB. Since the absolute abundances of these elements are still well below alkali basalt levels, the label transitional is adopted for these basalts. A series of fractionated MORB also occurs in this area, northwest of the Siqueiros Fracture Zone - Transform Fault. The normal tholeiites are either olivine-plagioclase or plagioclase-clinopyroxene phyric, while the transitional basalts are spinel-olivine phyric. Fractional crystallization quantitatively accounts for the chemical variability of the tholeiitic series but not for the transitional basalts. The tholeiitic series probably evolved in a crustal magma chamber ~4 km below the crest of the East Pacific Rise. 143Nd/144Nd and other chemical data suggest that the large-ion-lithophile-enriched transitional basalts may represent a hybrid of normal MORB and Siqueiros area alkali basalt. Incompatible element plots of K, P, and U indicate possible derivation of the transitional basalts by magma mixing. Magma mixing of unfractionated normal MORB and Siqueiros alkali basalt has been quantified. Derivation of the transitional basalts from a 1:1 mixture is supported by all available chemical data, including Cr, Cu, Nd, Ni, Sm, Sr, U, and V. This magma mixing apparently occurred at ?<~30 km depth within a few tens of kilometers from the EPR axis. These Siqueiros area EPR transitional basalts are compared with Mid-Atlantic Ridge (MAR) transitional basalts from the Iceland and Azores areas. The Siqueiros area basalts reflect a profound chemical and isotopic heterogeneity in the upper mantle, similar to that found along the MAR. Unlike the MAR, the EPR shows no evidence of plumelike bulges and associated large-scale outpourings of nonnormal MORB resulting from these mantle heterogeneities. Siqueiros alkali basalt and MORB, as well as transitional basalt and MORB, were recovered from single dredge hauls. Such close spatial and temporal proximity of the inferred mantle sources places severe constraints on geometric and physicochemical upper mantle models.