916 resultados para Physiological maturity
Resumo:
Embora seja possível produzir cebola (Allium cepa) o ano inteiro no Brasil, a maioria dos cultivares nacionais apresentam bulbos com baixa qualidade, o que proporcionou grande importação de cebola da Argentina, do tipo Valenciana, que não bulbifica no Brasil, mas que agradou os consumidores brasileiros. Para estudar o efeito da seleção para maturidade de bulbos baseada em progênies de meios irmãos obtidas do híbrido triplo intervarietal [Crioula x (Pira Ouro x Valenciana Sintética 14)] foram semeadas 17 progênies selecionadas para maturidade precoce e 25 para tardia, além da geração F1 e dos cultivares Pira Ouro (dias curtos), Crioula (intermediários) e Armada (dias longos), totalizando 46 tratamentos. O delineamento foi em blocos ao acaso, com três repetições de 32 plantas por parcela, cultivadas em bandejas de isopor. As progênies precoces apresentaram ciclo médio variando de 67 a 83 dias e as tardias de 85 a 103 dias. Na comparação da porcentagem de plantas improdutivas esta diferença também foi evidente, variando de 0,0% a 6,2% nas precoces e de 8,1% a 59,5% nas tardias. Os coeficientes de herdabilidades obtidos foram elevados, variando de 0,65 (porcentagem de plantas improdutivas, na seleção tardia) a 0,80 (peso médio de bulbo, na seleção precoce), sendo, em média, superiores na população selecionada para maturidade precoce. Foram obtidas progênies com peso de bulbo superior às testemunhas 'Pira Ouro' e 'Crioula' e com ciclo que não diferia destas. A seleção para maturidade foi altamente eficiente e a população selecionada para maturidade precoce apresenta grande potencial de originar cultivares adaptados, com produção e qualidade de bulbos superiores às disponíveis no mercado brasileiro.
Resumo:
This work investigated the effects of increasing temperature from 30 degrees C to 47 degrees C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30 degrees C, and then the temperature of the system was raised so it ranged from 35 degrees C in the last reactor to 43 degrees C in the first reactor or feeding reactor with a 2 degrees C difference between reactors. After 15 days at steady state, the temperature was raised from 37 degrees C to 45 degrees C for 25 days at steady state, then from 39 degrees C to 47 degrees C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/alpha, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40 degrees C, weak growth at 41 degrees C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40 degrees C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47 degrees C, but no isolates showing growth above 41 degrees C were obtained.
Resumo:
The purpose of the present study was to investigate the effect of thermal conditioning, (through exposure to heat stress), during pre-hatch development on some physiological responses of post-hatch broilers to a post-natal heat stress challenge. Exposure to heat stress at this stage, we hope, may possibly induce epigenetic heat adaptation. Incubating eggs were exposed to temperature of 39.0degreesC for 2 h from Day 13 to 17 of incubation. At 33, 35, 37, 39, 41 and 43 d of age, the broilers hatched from these eggs were housed individually in open-circuit respiration cells. The climatic chambers were set to 22degreesC and increased to 30degreesC for 4 h. O-2 consumption and CO2 production of each chicken was monitored continuously in order to calculate the heat production. Blood samples were obtained before and during the 4 h heat stress. Thermal conditioning during incubation did not affect the plasma T-4, corticosterone, glucose, uric acid and CK concentrations. Temperature challenge, decreased plasma T-3 of broilers of both groups but the decrease was greater in pre-conditioned broilers compared with controls. A similar trend was observed for triglycerides. These changes did not affect total heat production. Since decreased T3 and triglyceride levels are part of the mechanisms for thermoregulation, these suggest that thermal conditioning during incubation can improve the broiler chicken capability for thermotolerance at later post-hatch age. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Water temperature alterations can determine harmful physiological modifications in fish, which should be prepared to cope with this, and nutrition strategies seem to be essential. This study evaluated the effects of different levels of vitamin C and lipids on physiological responses of Nile tilapia, Oreochromis niloticus, submitted to temperature stress. There were two phases: Phase I - preparing fish to store vitamin C and lipid at appropriate temperature, and Phase II - evaluating the contributions these reserves make to fish physiology under low-temperature stress. The experiment used a 3 x 2 factorial design with three vitamin C levels (300, 600, and 1200 mg/kg diet) and two lipid levels (8.0 and 12.0%), plus absence of nutrient test and a diet of 6.0% lipids and 125.0 mg/kg vitamin C. In Phase I, 192 fish were kept at 26.0 +/- 1.0 C for 112 d, and in Phase II, 48 fish were kept at 18.0 +/- 0.5 C for 32 d and at 15.0 +/- 0.5 C for 11 d. Fish fed C0L0 diet showed lower erythrocytes values in both phases; higher vitamin C supplement determined higher red blood cell (RBC) number and higher hematocrit (Htc) (Phase II); Htc was significantly lower in Phase II; after temperature stress, fish fed C0L0 diet had higher mean corpuscular volume, lower hemoglobin corpuscular concentration, and significantly lower vitamin C concentration in the liver; and higher supplementation determined a higher concentration in the liver (Phases I and II). Higher plasmatic cortisol concentration was seen in fish fed C0L0 diet. In conclusion, our results show that the absence of vitamin C in diets impairs RBC formation and does not enable fish to cope with stress; excess vitamin C is efficient in mitigating stress and 600 mg/kg diet is economic and physiologically sufficient to prepare fish for coping with low-temperature stress. Lipid supplementation does not determine alterations in stress biochemical parameters.
Resumo:
The use of cryoprotectants and slow cooling rates are routine procedures for the cryopreservation of plant cell lines. However, our results with rice (Oryza sativa L,, ev. Taipei 309) show that calli can be cryopreserved by direct immersion and stored in liquid nitrogen without any cryoprotection, the efficiency of recovery using this method, as well as a conventional method was generally increased with a previous abscisic acid (ABA) treatment. Following cryopreservation, calli demonstrated some differences with respect to unfrozen calli of the same lines, Thus, resistance to freezing stress (- 20 degrees C for 2 h) increased significantly in all lines tested, irrespective of their pre-incubation with ABA, Calli that had been directly stored in liquid nitrogen also demonstrated a higher competence for genetic transformation than their unfrozen counterparts, as indicated by the transient gene expression levels obtained after particle bombardment, These differences might lead to further biotechnological applications, A genetic analysis of amplified DNA polymorphisms was performed with three independent lines that had been subjected to four combinations of ABA treatment and direct immersion in liquid nitrogen, At the loci screened with the randomly amplified polymorphic DNA (RAPD) markers tested, the genetic variations among lines and among calli of the same line appear to bd more related to tissue-culture-induced somaclonal variation than to cryoselection.
Resumo:
This study investigated the effect of non-ventilation of the incubator during the first 10 days of incubation and its combination with dexamethasone administration at day 16 or 18 of incubation on hatching parameters and embryo and post-hatch chick juvenile physiology. A total of 2400 hatching eggs produced by Cobb broiler breeders were used for the study. Blood samples were collected at day 18 of incubation, at internal pipping stage (IP), at the end of hatch (day-old chick) and at 7-daypost-hatch for T-3, T-4 and corticosterone levels determination. From 448 to 506 h of incubation, the eggs were checked individually in the hatcher every 2 h for pipping and hatching. The results indicate that non-ventilation during the first 10-day shortened incubation duration up to IP, external pipping (EP) and hatch, had no effect on hatchability and led to higher T-3 levels at IP but lower corticosterone levels at 7-day-post-hatch. The injection of dexamethasone at days 16 and 18 of incubation affected hatching and blood parameters in both the ventilated and non-ventilated embryos differentially and the effect was dependent on the age of the embryo. Dexamethasone increased T-3 levels and T-3/T-4 ratios but the effect was greater with early non-ventilation of eggs. Dexamethasone decreased hatchability but the effect was greater when injected at day 16 and especially in ventilated embryos. The effects of incubation protocols and dexamethasone treatments during incubation were still apparent in the hatched chicks until 7 days of age. The changes in T-3, T-4 and corticosterone levels observed in response to the early incubation conditions and late dexamethasone treatments in this study suggest that incubator ventilation or non-ventilation may influence the hypothalamic-pituitary-adrenal axis (HPA) regulation of stress levels (in terms of plasma corticosterone levels) and thyroid function in the embryo with impact on incubation duration, hatching events and early post-hatch life of the chick. Our results also suggest that some stages of development are more sensitive to dexamethasone administration as effects can be influenced by early incubation protocols. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at similar to 0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Methods of assessment of compost maturity are needed so the application of composted materials to lands will provide optimal benefits. The aim of the present paper is to assess the maturity reached by composts from domestic solid wastes (DSW) prepared under periodic and permanent aeration systems and sampled at different composting time, by means of excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform infrared spectroscopy (FT-IR). EEM spectra indicated the presence of two different fluorophores centered, respectively, at Ex/Em wavelength pairs of 330/425 and 280/330 nm. The fluorescence intensities of these peaks were also analyzed, showing trends related to the maturity of composts. The contour density of EEM maps appeared to be strongly reduced with composting days. After 30 and 45 days of composting, FT-IR spectra exhibited a decrease of intensity of peaks assigned to polysaccharides and in the aliphatic region. EEM and FT-IR techniques seem to produce spectra that correlate with the degree of maturity of the compost. Further refinement of these techniques should provide a relatively rapid method of assessing the suitability of the compost to land application.
Resumo:
The dough-leavening power of baker's yeast, Saccharomyces cerevisiae, is strongly influenced by conditions under which the pressed yeast is maintained prior to bread dough preparation. In this study, the influence of the yeast cell's pre-treatment with organic acids (malic, succinic, and citric acids) was investigated at a wide range of pH values when the pressed yeast samples were exposed to 30 degrees C. Increased fermentative activity was observed immediately after pre-treatment of the cells with organic acids. When the pH of the pressed yeast containing added citric acid was raised from 3.5 to 7.5, increases in both fermentative and maltase activities were obtained. Improvements in viability and levels of total protein were also observed during storage in the presence of citric acid, notably at pH 7.5. Glycerol-3-phosphate dehydrogenase activity and levels of internal glycerol also increased in the presence of citrate. on the other hand, pressed yeast samples containing succinic acid at pH 7.5 showed decreased viability during storage despite the maintenance of high levels of fermentative activity, similar to pressed yeast containing malic acid at pH 4.5 and 7.5. Decreases in intracellular levels of trehalose were observed during storage in all cases. Overall, the results of this study revealed the potential benefits of adding organic acids to pressed yeast preparations for baking purposes.
Resumo:
Previously, we reported that thermal conditioning at 39degreesC on days 13-17 of incubation of broiler eggs enabled thermotolerance during post-hatch growth (J. Therm. Biol. 28 (2003) 133). Tolerance to a temperature of 30degreesC was accompanied by changes in thyroid hormones and metabolic parameters. In the current study, we determined the mechanism of epigenetic heat adaptation during embryonic age by measuring blood physiological parameters that may be associated with the ultimate effects of thermal conditioning. Hatching eggs from Ross breeders were subjected to heat treatment of 39degreesC at days 13, 14, 15, 16 and 17 of incubation for 2 h per day. Control eggs were incubated at 37.6degreesC. Samples of eggs were withdrawn on each day of thermal conditioning and at internal pipping (IP) to obtain blood samples from embryos. The remaining eggs were weighed at day 18 and transferred to hatchers. The timing of IP, external pipping (EP) and hatching were monitored every 2 h. At hatch, chicks were weighed and hatchability was determined. Blood samples were obtained from samples of day-old chicks. T3, T4, corticosterone, pCO(2), pO(2) levels were determined in the blood. Blood pH was measured and T3/T4 ratios were calculated. Heat conditioning significantly increased corticosterone and pO(2) levels and blood pH but depressed pCO(2) at day 14. These were followed by a significant depression of T4 level on day 15. Remarkably, at day 16, all these parameters were back to normal as in the control embryos. Hatching was delayed by thermal conditioning probably as a result of the depressed corticosterone levels at IP. Hatchability was also lower in the heat-treated group but 1-day old chick weights were comparable to those of the controls. The result suggests that epigenetic thermal conditioning involves changes in these physiological parameters and probably serve as a method for epigenetic temperature adaptation since the same mechanisms are employed for coping with heat during post-embryonic growth. It also suggests that days 14-15 may be the optimal and most sensitive timing for evoking this mechanism during embryonic development. The adverse effects of heat treatment observed in this study may have been due to the continued exposure to heat until day 17. Fine-tuning thermal conditioning to days 14-15 only may improve these production parameters. (C) 2003 Elsevier Ltd. All rights reserved.