871 resultados para Perinatal results in Spain
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Integral publisher's ads, [3] p. at end of v. 1.
Resumo:
Bound in blue paper boards; rose cloth shelfbacks.
Resumo:
Mode of access: Internet.
Resumo:
First and only edition of what appears to be the first English book fully illustrated with colored lithographed plates.
Resumo:
Mode of access: Internet.
Resumo:
"Authorities": v. 1, p. [8].
Resumo:
Thesis--Univ. de Lille.
Resumo:
Pyrithiamine-induced thiamine deficiency (TD) is a well-established model of Wernicke's encephalopathy in which a glutamate-mediated excitotoxic mechanism may play an important role in determining selective vulnerability. In order to examine this possibility, cultured astrocytes were exposed to TD and effects on glutamate transport and metabolic function were studied. TD led to decreases in cellular levels of thiamine and thiamine diphosphate (TDP) after 24 h of treatment and decreased activities of the TDP-dependent enzymes alpha-ketoglutarate dehydrogenase and transketolase after 4 and 7 days, respectively. TD treatment for 10 days led to a reversible decrease in the uptake of [H-3]-D-aspartate, a nonmetabolizable analogue of glutamate. Kinetic analysis revealed that the uptake inhibition was caused by a 47% decrease in the V-max for uptake of [H-3]-D-aspartate, with no change in the K-m value. Immunoblotting showed that this decrease in uptake was due to an 81% downregulation of the astrocyte-specific GLAST glutamate transporter. Loss of uptake activity and GLAST protein were blocked by treatment with the protein kinase C inhibitor H7, while exposure to DCG IV, a group II metabotropic glutamate receptor (mGluR) agonist, resulted in improvement of [H-3]-D-aspartate uptake and a partial reversal of transporter downregulation. These results are consistent with our recent in vivo findings of a loss of astrocytic glutamate transporters in TD and provide evidence that TD conditions may increase phosphorylation. of GLAST, contributing to its downregulation. In addition, manipulation of group II mGluR activity may provide an important strategy in the treatment of this disorder. (C) 2003 Wiley-Liss, Inc.
Resumo:
Background and aim: Obesity is a risk factor for progression of fibrosis in chronic liver diseases such as non-alcoholic fatty liver disease and hepatitis C. The aim of this study was to investigate the longer term effect of weight loss on liver biochemistry, serum insulin levels, and quality of life in overweight patients with liver disease and the effect of subsequent weight maintenance or regain. Patients: Thirty one patients completed a 15 month diet and exercise intervention. Results: On completion of the intervention, 21 patients (68%) had achieved and maintained weight loss with a mean reduction of 9.4 (4.0)% body weight. Improvements in serum alanine aminotransferase (ALT) levels were correlated with the amount of weight loss (r=0.35, p=0.04). In patients who maintained weight loss, mean ALT levels at 15 months remained significantly lower than values at enrolment (p=0.004), while in regainers (n=10), mean ALT levels at 15 months were no different to values at enrolment (p=0.79). Improvements in fasting serum insulin levels were also correlated with weight loss (r=0.46, p=0.04), and subsequent weight maintenance sustained this improvement. Quality of life was significantly improved after weight loss. Weight maintainers sustained recommended levels of physical activity and had higher fasting insulin levels (p=0.03) at enrolment than weight regainers. Conclusion: In summary, these findings demonstrate that maintenance of weight loss and exercise in overweight patients with liver disease results in a sustained improvement in liver enzymes, serum insulin levels, and quality of life. Treatment of overweight patients should form an important component of the management of those with chronic liver disease.
Resumo:
Human Valpha24(+)Vbeta11(+) natural killer T (NKT) cells are a distinct CD1d-restricted lymphoid subset specifically and potently activated by alpha-galactosylceramide (alpha-GalCer) (KRN7000) presented by CD1 d on antigen-presenting cells. Preclinical models show that activation of Valpha24(+)Vbeta11(+) NKT cells induces effective antitumor immune responses and potentially important secondary immune effects, including activation of conventional T cells and NK cells. We describe the first clinical trial of cancer immune therapy with alpha-GalCer-pulsed CD1d-expressing dendritic cells. The results show that this therapy has substantial, rapid, and highly reproducible specific effects on Valpha24(+)Vbeta11(+) NKT cells and provide the first human in vivo evidence that Valpha24(+)Vbeta11(+) NKT cell stimulation leads to activation of both innate and acquired immunity, resulting in modulation of NK, T-, and B-cell numbers and increased serum interferon-gamma. We present the first clinical evidence that Valpha24(+)Vbeta11(+) NKT cell memory produces faster, more vigorous secondary immune responses by innate and acquired immunity upon restimulation.