942 resultados para Penetrating Eye Injury
Resumo:
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS.
Resumo:
ABSTRACT The objective of this study was to evaluate the effect of heat treatment and ultraviolet radiation (UV-C) in the prevention of chilling injury in mangoes cv. Tommy Atkins previously stored or not under injury condition after their transference to ambient condition. Fruits were divided into groups: two were hydrothermally treated (46.1 ºC/90 min; 55 ºC/5 min) and two were exposed to UV-C radiation (1.14 kJ m-2; 2.28 kJ m-2). These groups were stored under chilling injury conditions (5 ºC for 14 days), as established in preliminary tests. Other untreated groups were stored at 12 ºC or 5 ºC. After the storage period, they were transferred to ambient conditions (21.9 ºC; 55% RH) and the quality was evaluated. All the data were submitted to multivariate analysis as the tool to verify the simultaneous effect of the treatments under the quality parameters. The multivariate analysis indicated that the hydrothermal treatments at 46.1 °C/90 min and 55 °C/5 min and the UV-C radiation at doses of 1.14 kJ m-2 and 2.28 kJ m-2 were effective in minimized the symptoms of chilling injury in mangoes ‘Tommy Atkins’ stored at 5 °C for 14 days. However, after their transference to environmental condition at 21.9 °C, only the UV-C kept this control, especially at a dose of 2.28 kJ m-2. This treatment did not prevent the development of the characteristic color or affected the normal ripening and allowed the conservation of fruit for a period of 14 days at 5 °C, plus seven days of storage at environmental condition, which corresponds to the shipping transportation plus the time for sale.
Resumo:
BACKGROUND: During the last decade, the management of blunt hepatic injury has considerably changed. Three options are available as follows: nonoperative management (NOM), transarterial embolization (TAE), and surgery. We aimed to evaluate in a systematic review the current practice and outcomes in the management of Grade III to V blunt hepatic injury. METHOD: The MEDLINE database was searched using PubMed to identify English-language citations published after 2000 using the key words blunt, hepatic injury, severe, and grade III to V in different combinations. Liver injury was graded according to the American Association for the Surgery of Trauma classification on computed tomography (CT). Primary outcome analyzed was success rate in intention to treat. Critical appraisal of the literature was performed using the validated National Institute for Health and Care Excellence "Quality Assessment for Case Series" system. RESULTS: Twelve articles were selected for critical appraisal (n = 4,946 patients). The median quality score of articles was 4 of 8 (range, 2-6). Overall, the median Injury Severity Score (ISS) at admission was 26 (range, 0.6-75). A median of 66% (range, 0-100%) of patients was managed with NOM, with a success rate of 94% (range, 86-100%). TAE was used in only 3% of cases (range, 0-72%) owing to contrast extravasation on CT with a success rate of 93% (range, 81-100%); however, 9% to 30% of patients required a laparotomy. Thirty-one percent (range, 17-100%) of patients were managed with surgery owing to hemodynamic instability in most cases, with 12% to 28% requiring secondary TAE to control recurrent hepatic bleeding. Mortality was 5% (range, 0-8%) after NOM and 51% (range, 30-68%) after surgery. CONCLUSION: NOM of Grade III to V blunt hepatic injury is the first treatment option to manage hemodynamically stable patients. TAE and surgery are considered in a highly selective group of patients with contrast extravasation on CT or shock at admission, respectively. Additional standardization of the reports is necessary to allow accurate comparisons of the various management strategies. LEVEL OF EVIDENCE: Systematic review, level IV.
Resumo:
Spinal cord injuries result after diving into shallow water, often after incautious jumps head first into water of unknown depth during recreational or sport activities. Mortality is generally due to upper cervical trauma. The authors present a case of a diving-related death in a young woman who underwent medicolegal investigations. The measured water depth at the supposed dive site was 1.40 m. Postmortem radiology and autopsy revealed fractures of the body and the posterior arch of the fifth cervical vertebra, a fracture of the right transverse process of the sixth cervical vertebra and hemorrhages involving the cervical paraspinal muscles. Neuropathology showed a posterior epidural hematoma involving the whole cervical region and a symmetric laceration of the spinal cord located at the fourth and fifth cervical vertebra level, surrounded by multiple petechial hemorrhages. Toxicology revealed the presence of ethanol in both blood and urine samples. The death was attributed to cervical spine fracture (C5-C6), spinal cord contusion, and subsequent drowning. This case highlights the usefulness of postmortem radiology, examination of the deep structures of the neck, toxicology, neuropathology, and a detailed research of signs of drowning to formulate appropriate hypotheses pertaining to the cause and mechanism of death.
Resumo:
Experimental and clinical studies suggest that primate species exhibit greater recovery after lateralized compared to symmetrical spinal cord injuries. Although this observation has major implications for designing clinical trials and translational therapies, advantages in recovery of nonhuman primates over other species have not been shown statistically to date, nor have the associated repair mechanisms been identified. We monitored recovery in more than 400 quadriplegic patients and found that functional gains increased with the laterality of spinal cord damage. Electrophysiological analyses suggested that corticospinal tract reorganization contributes to the greater recovery after lateralized compared with symmetrical injuries. To investigate underlying mechanisms, we modeled lateralized injuries in rats and monkeys using a lateral hemisection, and compared anatomical and functional outcomes with patients who suffered similar lesions. Standardized assessments revealed that monkeys and humans showed greater recovery of locomotion and hand function than did rats. Recovery correlated with the formation of corticospinal detour circuits below the injury, which were extensive in monkeys but nearly absent in rats. Our results uncover pronounced interspecies differences in the nature and extent of spinal cord repair mechanisms, likely resulting from fundamental differences in the anatomical and functional characteristics of the motor systems in primates versus rodents. Although rodents remain essential for advancing regenerative therapies, the unique response of the primate corticospinal tract after injury reemphasizes the importance of primate models for designing clinically relevant treatments.
Resumo:
BACKGROUND & AIMS: The beneficial effect of nonselective beta-blockers (NSBB) has recently been questioned in patients with end-stage cirrhosis. We analysed the impact of NSBB on outcomes in severe alcoholic hepatitis (AH). METHODS: This study was based on a prospective database of patients with severe, biopsy-proven AH. Patients admitted from July, 2006 to July, 2014 were retrospectively studied. Patients were divided into two groups (with and without NSBB) and assessed for the occurrence of Acute Kidney Injury (AKI) and transplant-free mortality during a 168-day follow-up period. RESULTS: One hundred thirty-nine patients were included, the mean Maddrey score was 71 ± 34 and 86 patients (61.9%) developed AKI. Forty-eight patients (34.5%) received NSBB. The overall 168-day transplant-free mortality was 50.5% (95%CI, 41.3-60.0%). The overall 168-day cumulative incidence of AKI was 61.9% (95%CI, 53.2-69.4%). When compared, patients with NSBB had a lower heart rate (65 ± 13 vs 92 ± 12, P < 0.0001) and a lower mean arterial pressure (MAP, 78 ± 3 vs 87 ± 5, P < 0.0001). Patients with NSBB had comparable MELD scores, Maddrey scores, and medical histories. The 168-day transplant-free mortality was 56.8% (95%CI, 41.3-69.7%) in patients with NSBB and 46.7% (95%CI, 35.0-57.6%) without NSBB (P = 0.25). The 168-day cumulative incidence of AKI was 89.6% (95%CI, 74.9-95.9%) with NSBB compared to 50.4% (95%CI: 39.0-60.7) for no NSBB (P = 0.0001). The independent factors predicting AKI were a higher MELD score and the presence of NSBB. CONCLUSIONS: The use of NSBB in patients with severe AH is independently associated with a higher cumulative incidence of AKI.
Resumo:
PURPOSE: Signal detection on 3D medical images depends on many factors, such as foveal and peripheral vision, the type of signal, and background complexity, and the speed at which the frames are displayed. In this paper, the authors focus on the speed with which radiologists and naïve observers search through medical images. Prior to the study, the authors asked the radiologists to estimate the speed at which they scrolled through CT sets. They gave a subjective estimate of 5 frames per second (fps). The aim of this paper is to measure and analyze the speed with which humans scroll through image stacks, showing a method to visually display the behavior of observers as the search is made as well as measuring the accuracy of the decisions. This information will be useful in the development of model observers, mathematical algorithms that can be used to evaluate diagnostic imaging systems. METHODS: The authors performed a series of 3D 4-alternative forced-choice lung nodule detection tasks on volumetric stacks of chest CT images iteratively reconstructed in lung algorithm. The strategy used by three radiologists and three naïve observers was assessed using an eye-tracker in order to establish where their gaze was fixed during the experiment and to verify that when a decision was made, a correct answer was not due only to chance. In a first set of experiments, the observers were restricted to read the images at three fixed speeds of image scrolling and were allowed to see each alternative once. In the second set of experiments, the subjects were allowed to scroll through the image stacks at will with no time or gaze limits. In both static-speed and free-scrolling conditions, the four image stacks were displayed simultaneously. All trials were shown at two different image contrasts. RESULTS: The authors were able to determine a histogram of scrolling speeds in frames per second. The scrolling speed of the naïve observers and the radiologists at the moment the signal was detected was measured at 25-30 fps. For the task chosen, the performance of the observers was not affected by the contrast or experience of the observer. However, the naïve observers exhibited a different pattern of scrolling than the radiologists, which included a tendency toward higher number of direction changes and number of slices viewed. CONCLUSIONS: The authors have determined a distribution of speeds for volumetric detection tasks. The speed at detection was higher than that subjectively estimated by the radiologists before the experiment. The speed information that was measured will be useful in the development of 3D model observers, especially anthropomorphic model observers which try to mimic human behavior.
Resumo:
Demyelinating diseases are characterized by a loss of oligodendrocytes leading to axonal degeneration and impaired brain function. Current strategies used for the treatment of demyelinating disease such as multiple sclerosis largely rely on modulation of the immune system. Only limited treatment options are available for treating the later stages of the disease, and these treatments require regenerative therapies to ameliorate the consequences of oligodendrocyte loss and axonal impairment. Directed differentiation of adult hippocampal neural stem/progenitor cells (NSPCs) into oligodendrocytes may represent an endogenous source of glial cells for cell-replacement strategies aiming to treat demyelinating disease. Here, we show that Ascl1-mediated conversion of hippocampal NSPCs into mature oligodendrocytes enhances remyelination in a diphtheria-toxin (DT)-inducible, genetic model for demyelination. These findings highlight the potential of targeting hippocampal NSPCs for the treatment of demyelinated lesions in the adult brain.
Resumo:
Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4±2.3 to 5.4±2.9 mmol/L), pyruvate (126.9±65.1 to 172.3±74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27±6 to 35±9; all, p<0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r=0.56; p<0.0001), while an inverse correlation (r=-0.11; p=0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r=0.62 to r=0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.
Resumo:
Three-dimensional reconstruction of reservoir analogues can be improved combining data from different geophysical methods. Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) data are valuable tools, since they provide subsurface information from internal architecture and facies distribution of sedimentary rock bodies, enabling the upgrading of depositional models and heterogeneity reconstruction. The Lower Eocene Roda Sandstone is a well-known deltaic complex widely studied as a reservoir analogue that displays a series of sandstone wedges with a general NE to SW progradational trend. To provide a better understanding of internal heterogeneity of a 10m-thick progradational delta-front sandstone unit, 3D GPR data were acquired. In addition, common midpoints (CMP) to measure the sandstone subsoil velocity, test profiles with different frequency antennas (25, 50 and 100MHz) and topographic data for subsequent correction in the geophysical data were also obtained. Three ERT profiles were also acquired to further constrain GPR analysis. These geophysical results illustrate the geometry of reservoir analogue heterogeneities both depositional and diagenetic in nature, improving and complementing previous outcrop-derived data. GPR interpretation using radar stratigraphy principles and attributes analysis provided: 1)tridimensional geometry of major stratigraphic surfaces that define four units in the GPR Prism, 2) image the internal architecture of the units and their statistical study of azimuth and dips, useful for a quick determination of paleocurrent directions. These results were used to define the depositional architecture of the progradational sandbody that shows an arrangement in very-high-frequency sequences characterized by clockwise paleocurrent variations and decrease of the sedimentary flow, similar to those observed at a greater scale in the same system. This high-frequency sequential arrangement has been attributed to the autocyclic dynamics of a supply-dominated delta- front where fluvial and tidal currents are in competition. The resistivity models enhanced the viewing of reservoir quality associated with cement distribution caused by depositional and early diagenetic processes related to the development of transgressive and regressive systems tracts in igh-frequency sequences.
Resumo:
Peripheral nerve injury is typically associated with long-term disturbances in sensory localization, despite nerve repair and regeneration. Here, we investigate the extent of correct reinnervation by back-labeling neuronal soma with fluorescent tracers applied in the target area before and after sciatic nerve injury and repair in the rat. The subpopulations of sensory or motor neurons that had regenerated their axons to either the tibial branch or the skin of the third hindlimb digit were calculated from the number of cell bodies labeled by the first and/or second tracer. Compared to the normal control side, 81% of the sensory and 66% of the motor tibial nerve cells regenerated their axons back to this nerve, while 22% of the afferent cells from the third digit reinnervated this digit. Corresponding percentages based on quantification of the surviving population on the experimental side showed 91%, 87%, and 56%, respectively. The results show that nerve injury followed by nerve repair by epineurial suture results in a high but variable amount of topographically correct regeneration, and that proportionally more neurons regenerate into the correct proximal nerve branch than into the correct innervation territory in the skin