870 resultados para Path-dependence
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Majority of biometric researchers focus on the accuracy of matching using biometrics databases, including iris databases, while the scalability and speed issues have been neglected. In the applications such as identification in airports and borders, it is critical for the identification system to have low-time response. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. This paper investigates several classifiers, which are widely used in iris recognition papers, and the response time along with accuracy. The existing Gauss-Laguerre Wavelet based iris coding scheme, which shows perfect discrimination with rotary Hamming distance classifier, is used for iris coding. The performance of classifiers is compared using small, medium, and large scale databases. Such comparison shows that OPF has faster response for large scale database, thus performing better than more accurate but slower Bayesian classifier.
Resumo:
Fluoroindate glasses containing 1, 2, 3, and 4 mol% ErF3 were prepared in a dry box under an argon atmosphere. Absorption spectra of these glasses at room temperature were obtained. The Judd-Ofelt parameters Ωλ (λ = 2, 4, 6) for f-f transitions of Er3+ ions as well as transition probabilities, branching ratios, radiative lifetimes, and peak cross-sections for stimulated emission of each band were determined. The concentration effect on the intensities is analyzed. The optical properties of the fluoroindate glasses doped with Er3+ ions are compared with those of other glasses described in the literature. © 1995.
Resumo:
Closed string physical states are BRST cohomology classes computed on the space of states annihilated by b- 0. Since b- 0 does not commute with the operations of picture changing, BRST cohomologies at different pictures need not agree. We show explicitly that Ramond-Ramond (RR) zero-momentum physical states are inequivalent at different pictures, and prove that non-zero-momentum physical states are equivalent in all pictures. We find that D-brane states represent BRST classes that are non-polynomial on the superghost zero-modes, while RR gauge fields appear as polynomial BRST classes. We also prove that in x-cohomology, the cohomology where the zero-mode of the spatial coordinates is included, there is a unique ghost-number one BRST class responsible for the Green-Schwarz anomaly, and a unique ghost number minus one BRST class associated with RR charge. © 1998 Elsevier Science B.V.
Resumo:
The preparation and characterization of transparent glass-ceramics in the composition of 30Li2O:5ZrO2:xBaO:(100-x) SiO2 with x = 0, 5, 10, 15, and 20 mol% are described. Glasses were melted in a platinum crucible at 1100°C for 2 h and then heat-treated at 900°C for 3 h. The characterizations were performed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman and infrared spectroscopy, and scanning electron microscopy (SEM). The experimental results indicate that there was a structural change in the glass-ceramics as the BaO concentration in the mixture increased. In the XRD patterns of samples without heat treatment, only the halo was observed. After heat treatment, the appearance of the materials was verified by X-ray diffraction peaks. The reorganization of the amorphous solid was confirmed by Raman and IR spectroscopy along with XPS and SEM, with a more homogeneous phase formation being observed.
Resumo:
Since oxygen vacancies act as donors in SnO2, the electrical properties are related to deviation from stoichiometric composition. Depending on stoichiometry SnO2 can be highly insulating or may exhibit fairly high n-type conductivity. Since bandgap transitions are in the ultraviolet range, its photoconductivity is strongly dependent on the excitation source. We have measured variation of photoconductivity excitation with wavelength for tin dioxide grown by dip-coating sol-gel technique using several light sources: tungsten lamp, xenon, mercury and deuterium, and present selected results. The main band is obtained in the range 3-4eV according to light source spectrum in the ultraviolet range. The presence of oxygen in the cryostat also affects the spectrum since electron-hole pairs react with adsorbed oxygen specimens. © 1999 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
Resumo:
The short-range properties of the kaon-nucleon (KN) interaction are studied within the meson-exchange model of the Jülich group. Specifically, dynamical explanations for the phenomenological short-range repulsion, required in this model for achieving agreement with the empirical KN data, are explored. Evidence is found that contributions from the exchange of a heavy scalar-isovector meson [a0(980)] as well as from genuine quark-gluon exchange processes are needed. Taking both mechanisms into account, a satisfactory description of the KN phase shifts can be obtained without resorting to phenomenological pieces.
Resumo:
Path formulation can be used to classify and structure efficiently multiparameter bifurcation problems around fundamental singularities: the cores. The non-degenerate umbilic singularities are the generic cores for four situations in corank 2: the general or gradient problems and the ℤ 2-equivariant (general or gradient) problems. Those categories determine an interesting 'Russian doll' type of structure in the universal unfoldings of the umbilic singularities. One advantage of our approach is that we can handle one, two or more parameters using the same framework (even considering some special parameter structure, for instance, some internal hierarchy). We classify the generic bifurcations that occur in those cases with one or two parameters.
Resumo:
We study the running of the QCD coupling with the momentum squared (Q 2) and the temperature scales in the high temperature limit (T > Tc), using a mass dependent renormalization scheme to build the Renormalization Group Equations. The approach used guaranty gauge invariance, through the use of the Hard Thermal Loop approximation, and independence of the vertex chosen to renormalize the coupling. In general, the dependence of the coupling with the temperature is not logarithmical, although in the region Q2 ∼ T2 the logarithm approximation is reasonable. Finally, as known from Debye screening, color charge is screened in the coupling. The number of flavors, however, is anti-screened.
Resumo:
This study aimed to determine the best auxiliary trait for indirect selection of soybean grain yield, through path analysis and in avoidance of the adverse effects of multicollinearity and expected response. Seventy-nine F5 soybean genotypes from the cross FT-Cometa x Bossier were used. The populations were distributed on the field was the families inserted with replicated controls. Primary and secondary traits of grain yield were evaluated in four phenotypically superior plants per family. The traits number of pods, height and number of nodes were considered as the most important, showing the best combination of direct effect and genotypic correlation. The number of pods achieved the highest expected gain through the estimation method based on the selection differential. On the other hand, plant height, by the method based on selection intensity, was not a good indicator of the most productive plants.
Resumo:
The swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.