979 resultados para Parathyroid Hormones
Resumo:
Aggregating cultures of mechanically dissociated fetal brain cells provide an excellent system for neurobiological studies of cellular growth and differentiation, but, in common with almost all culture systems, they have the disadvantage that crude serum is required in the medium. Although several cell lines have either been adapted to serum-free conditions or grown normally in serum-free media supplemented with hormones, trace elements and defined serum components, this approach has never been applied to differentiating primary cells of the central nervous system. We now describe the successful cultivation of aggregating fetal rat brain cells in a chemically defined, serum-free medium.
Resumo:
Calcium and vitamin D supplementation are warranted for the treatment of osteoporosis, when other specific drugs are used. Vitamin D supplementation is necessary when the plasma level of 25-hydroxy-vitamin D is below 30 nmol/l (12 pg/l) in order to avoid any increase of the plasma parathyroid hormone level. Bisphosphonates are the most widely drugs used. Recent advances will provide patients with a more convenient therapeutically equivalent alternative: the once-weekly oral dosing regimen and probably the possibility to give infusions at intervals of up to one year. Parathyroid hormone administered subcutaneously daily produced a dramatic increase of trabecular and cortical bone mineral density, and an important decrease of vertebral and nonvertebral fracture risk. Strontium is a new original drug, which stimulates bone formation, and inhibits bone resorption. It significantly improves trabecular and cortical bone mass. Calcitonin not only prevents the recurrence of vertebral fractures, but possibly could decrease hip fractures risk. Hydrochlorothiazide preserves the bone mineral density, and decreases nonvertebral fracture risk, as showed in epidemiological studies. Large clinical trials with statins therapy in appropriate populations are required to find out whether these drugs have any role in preventing fractures.
Resumo:
Intracellular glucose signalling pathways control the secretion of glucagon and insulin by pancreatic islet α- and β-cells, respectively. However, glucose also indirectly controls the secretion of these hormones through regulation of the autonomic nervous system that richly innervates this endocrine organ. Both parasympathetic and sympathetic nervous systems also impact endocrine pancreas postnatal development and plasticity in adult animals. Defects in these autonomic regulations impair β-cell mass expansion during the weaning period and β-cell mass adaptation in adult life. Both branches of the autonomic nervous system also regulate glucagon secretion. In type 2 diabetes, impaired glucose-dependent autonomic activity causes the loss of cephalic and first phases of insulin secretion, and impaired suppression of glucagon secretion in the postabsorptive phase; in diabetic patients treated with insulin, it causes a progressive failure of hypoglycaemia to trigger the secretion of glucagon and other counterregulatory hormones. Therefore, identification of the glucose-sensing cells that control the autonomic innervation of the endocrine pancreatic and insulin and glucagon secretion is an important goal of research. This is required for a better understanding of the physiological control of glucose homeostasis and its deregulation in diabetes. This review will discuss recent advances in this field of investigation.
Resumo:
Chronic exposure to glucocorticoid hormones, resulting from either drug treatment or Cushing's syndrome, results in insulin resistance, central obesity, and symptoms similar to the metabolic syndrome. We hypothesized that the major metabolic effects of corticosteroids are mediated by changes in the key metabolic enzyme adenosine monophosphate-activated protein kinase (AMPK) activity. Activation of AMPK is known to stimulate appetite in the hypothalamus and stimulate catabolic processes in the periphery. We assessed AMPK activity and the expression of several metabolic enzymes in the hypothalamus, liver, adipose tissue, and heart of a rat glucocorticoid-excess model as well as in in vitro studies using primary human adipose and primary rat hypothalamic cell cultures, and a human hepatoma cell line treated with dexamethasone and metformin. Glucocorticoid treatment inhibited AMPK activity in rat adipose tissue and heart, while stimulating it in the liver and hypothalamus. Similar data were observed in vitro in the primary adipose and hypothalamic cells and in the liver cell line. Metformin, a known AMPK regulator, prevented the corticosteroid-induced effects on AMPK in human adipocytes and rat hypothalamic neurons. Our data suggest that glucocorticoid-induced changes in AMPK constitute a novel mechanism that could explain the increase in appetite, the deposition of lipids in visceral adipose and hepatic tissue, as well as the cardiac changes that are all characteristic of glucocorticoid excess. Our data suggest that metformin treatment could be effective in preventing the metabolic complications of chronic glucocorticoid excess.
Resumo:
La variabilité interindividuelle au sein de la population générale se manifeste à plusieurs niveaux aussi bien externe pour des différences physiologiques qu'interne pour des différences toxicocinétiques et toxicodynamiques . Face à une agression chimique par exemple, nous ne réagissons en effet pas tous de manière identique. Entre le moment de l'exposition à un composé toxique et la maladie, une suite d'évènements biologiques peut survenir. La façon dont cette suite d'évènements se développera chez une personne dépend de sa susceptibilité individuelle aux risques chimiques. Celle-ci peut être déterminée par des facteurs génétiques, physiopathologiques (âge, sexe, grossesse, hormones, maladies, alimentation, etc.) et environnementaux. [Auteur]
Resumo:
Introduction : La sécrétion d'insuline est régulée par le glucose et également pardes hormones peptidiques libérées par le tractus digestif, comme la neurotensine(NT). La NT est un neuropeptide, sécrété notamment par les cellules N dela paroi de l'estomac, qui exerce des fonctions régulatrices complexes dans lesystème digestif. Notre laboratoire a récemment démontré que les cellulesendocrines du pancréas (les îlots de Langherans) expriment les trois récepteursconnus de la NT. Nous avons montré que la NT module la survie de la cellulebêta pancréatique (Coppola et al. 2008). Cette fonction met en jeu deux desrécepteurs de la NT, le NTSR2 et le NTSR3 qui forment, après stimulation parla NT, un complexe protéique régulateur de la survie des cellules (Béraud-Dufour et al. 2009) et également de la sécrétion d'insuline (Béraud-Dufour et al.2010).Matériels et méthodes : La caractérisation pharmacologique de l'effet NT sur lasécrétion d'insuline a été faite à l'aide de ligands spécifiques (agonistes ou antagonistes),dans des expériences d'imagerie calciques et d'exocytose. Nous avonsmesuré l'acivation des PKC par imagerie en temps réel. Afin de déterminer lerôle de la NT dans la physiologie générale nous avons utilisé des modèles in vitro(lignées de cellules INS-1E) et in vivo (souris invalidées NTSR1 et NTSR2).Résultats : Nous avons montré que les récepteurs NTSR2 et NTSR3 interviennentdans la modulation de la sécrétion d'insuline en fonction des conditionsphysiologiques : 1) la NT stimule la sécrétion dans des conditions basales deglucose. 2) elle inhibe la sécrétion dans des situations d'hyperglycémie. La NTmobilise plusieurs activités protéines kinases C (PKC) nécessaires à son rôlephysiologique (Béraud-Dufour et al. 2010).Par ailleurs, sur les modèles murins l'étude du métabolisme de souris transgéniquesinvalidées pour les gènes des NTSR1 et NTSR2 a permis de mettre en évidencel'implication de la NT dans la régulation de l'homéostasie du glucose. Invivo, nous avons observé que l'injection intra péritonéale de NT diminue la glycémieet que cet effet nécessite la présence du NTSR1. Nous avons observé quel'invalidation du gène du NTSR1 affecte la réponse des souris lors des tests detolérance au glucose et à l'insulineConclusion : Les résultats obtenus dans cette étude prouvent que le bon fonctionnementdu système neurotensinergique est nécessaire au maintien d'uneglycémie stable. La dérégulation de ce système pourrait être l'un des facteursimpliqué dans la survenue et/ou l'aggravation d'un diabète de type 2.
Resumo:
The international recommendations issued by GINA (Global Initiative for Asthma) have undergone considerable adaptations over the last years. This article proposes the local adaptation of those guidelines bearing on the practical aspects of the treatment for the general practitioner's use. One of the fundamental changes in these new guidelines on good practice relates to the permanent adaptation of the treatment on the basis of symptom control rather than on the severity of the asthma. Another change from the old recommendations concerns the manner in which the asthma is categorised into different phases.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
The synthesis of peptides which have the natriuretic and vasodilator properties of the atrial natriuretic factor has made it possible to study the physiological role of this recently discovered hormonal system. In addition to renal effects, atrial natriuretic peptides exert vascular, hemodynamic and endocrine actions which may participate in the regulation of plasma and interstitial volume as well as arterial blood pressure. Its acute hypotensive effect, which was observed in normal volunteers and in patients with cardiac failure or hypertension, is not entirely explained by its direct vasodilator effect. The complexity of its role is demonstrated by its inhibiting action on the synthesis and/or the activity of other vasoactive hormones. The observed increase in hematocrit suggests that vascular permeability may be enhanced; the resulting consequences, e.g. on blood viscosity, still need to be elucidated. When infusing atrial natriuretic peptides, there exists a clear delay between the moment steady-state plasma levels are achieved and peak effect occurs. This renders the interpretation of the results very difficult. At this moment, the physiological role of atrial natriuretic peptides as well as their potential future use as therapeutic agents cannot yet be fully appreciated.
Resumo:
The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.
Resumo:
Plants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system. Our results provide evidence that both endocytic and secretory cargo pass through the trans-Golgi network/early endosome (TGN/EE) and demonstrate that cargo in late endosomes/multivesicular bodies is destined for vacuolar degradation. Moreover, using spinning disc microscopy, we show that TGN/EEs move independently and are only transiently associated with an individual Golgi stack.
Resumo:
In Arabidopsis, interplay between nuclear auxin perception and trans-cellular polar auxin transport determines the transcriptional auxin response. In brevis radix (brx) mutants, this response is impaired, probably indirectly because of disturbed crosstalk between the auxin and brassinosteroid pathways. Here we provide evidence that BRX protein is plasma membrane-associated, but translocates to the nucleus upon auxin treatment to modulate cellular growth, possibly in conjunction with NGATHA class B3 domain-type transcription factors. Application of the polar auxin transport inhibitor naphthalene phthalamic acid (NPA) resulted in increased BRX abundance at the plasma membrane. Thus, nuclear translocation of BRX could depend on cellular auxin concentration or on auxin flux. Supporting this idea, NPA treatment of wild-type roots phenocopied the brx root meristem phenotype. Moreover, BRX is constitutively turned over by the proteasome pathway in the nucleus. However, a stabilized C-terminal BRX fragment significantly rescued the brx root growth phenotype and triggered a hypocotyl gain-of-function phenotype, similar to strong overexpressors of full length BRX. Therefore, although BRX activity is required in the nucleus, excess activity interferes with normal development. Finally, similar to the PIN-FORMED 1 (PIN1) auxin efflux carrier, BRX is polarly localized in vascular cells and subject to endocytic recycling. Expression of BRX under control of the PIN1 promoter fully rescued the brx short root phenotype, suggesting that the two genes act in the same tissues. Collectively, our results suggest that BRX might provide a contextual readout to synchronize cellular growth with the auxin concentration gradient across the root tip.
Resumo:
The postmortem diagnosis of heat-related deaths presents certain difficulties. Firstly, preterminal or terminal body temperatures are often not available. Additionally, macroscopic and microscopic findings are nonspecific or inconclusive and depend on survival duration after exposure. The diagnosis of hyperthermia is therefore essentially based on scene investigation, the circumstances of death, and the reasonable exclusion of other causes of death. Immunohistochemistry and postmortem biochemical investigations have been performed by several authors in order to better circumstantiate the physiopathology of hyperthermia and provide further information to confirm or exclude a heat-related cause of death. Biochemical markers, such as electrolytes, hormones, blood proteins, enzymes, and neurotransmitters, have been analyzed in blood and other biological fluids to improve the diagnostic potential of autopsy, histology, and immunohistochemistry. The aim of this article is to present a review of the medicolegal literature pertaining to the postmortem biochemical investigations that are associated with heat-related deaths.
Resumo:
Hirsutism is a relatively frequent condition in an ambulatory setting affecting about 4% of women. A rational clinical and biochemical diagnostic approach assures an optimal treatment directed at etiologic and pathogenetic factors. The diagnosis of hyperandrogenism is evaluated considering the pathophysiologic mechanisms responsible for excessive growth of hair. Ovarian and adrenal tumors are the most serious diseases that have to be excluded by clinical and biochemical tests. The other causes for hirsutism are treatable by a great variety of modalities, available drugs can inhibit pituitary gonadotropins, the hypothalamo-pituitary axis and the conversion of testosterone into biologically active substrate. Finally the binding of androgens to its receptor can be blocked. These possibilities for treatment and their indications for the different etiologies of hirsutism are discussed.