704 resultados para PYRAMIDAL INDENTATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We conducted nanoindentation to explore the hardness and elastic properties of silica stishovite, synthesized at high pressure and quenched to ambient conditions. A total of 10 crystallographic orientations were examined on selected grains with a maximum load of 4 or 20 mN. We observed discontinuity in the load-displacement curve (pop-in) for the [2 5 over(1, -)] and [6 2 over(1, -)] grains subjected to a maximum load of 20 mN. The single-crystal hardness at high plastic deformation is quasi-isotropic with an average of 32 ± 1 GPa, similar to the polycrystalline hardness reported earlier; the theoretical hardness determined from the experiments is about 54 ± 3 GPa. These two hardnesses suggest that stishovite is one of the hardest oxides. The measured indentation moduli are close to the predictions at low load (minor plasticity) but are considerably lower at high load (high plasticity). Both indentation hardness and modulus decrease with increasing plasticity. Our results underscore the necessity of considering the degree of plastic deformation when interpreting hardness and elastic moduli from indentation experiments. © 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional finite element analysis (FEA) model with elastic-plastic anisotropy was built to investigate the effects of anisotropy on nanoindentation measurements for cortical bone. The FEA model has demonstrated a capability to capture the cortical bone material response under the indentation process. By comparison with the contact area obtained from monitoring the contact profile in FEA simulations, the Oliver-Pharr method was found to underpredict or overpredict the contact area due to the effects of anisotropy. The amount of error (less than 10% for cortical bone) depended on the indentation orientation. The indentation modulus results obtained from FEA simulations at different surface orientations showed a trend similar to experimental results and were also similar to moduli calculated from a mathematical model. The Oliver-Pharr method has been shown to be useful for providing first-order approximations in the analysis of anisotropic mechanical properties of cortical bone, although the indentation modulus is influenced by anisotropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knoop and Vickers indentation cracks have frequently been used as model 'precracks' in ceramic bend specimens for fracture toughness (K1c) determination. Indentation residual stress reduces the measured K1c but can be removed or accounted for by grinding, annealing, or modelling. Values of K1c are obtained for four materials using Vickers indentations and an improved stress intensity factor. Methods for residual stress removal or incorporation are compared, and the most reliable stress removal alternative is identified for each material. © 1996 The Institute of Materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanistic models based on geometrically necessary dislocations are re-examined in light of recent experiments exhibiting the indentation size effect. A simple method is developed to combine work hardening, solid solution hardening, radiation hardening and size effects. The model is verified by experiments in ionic salt crystals. © 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of elastic anisotropy on nanoindentation measurements in human tibial cortical bone. Nanoindentation was conducted in 12 different directions in three principal planes for both osteonic and interstitial lamellae. The experimental indentation modulus was found to vary with indentation direction and showed obvious anisotropy (oneway analysis of variance test, P < 0.0001). Because experimental indentation modulus in a specific direction is determined by all of the elastic constants of cortical bone, a complex theoretical model is required to analyze the experimental results. A recently developed analysis of indentation for the properties of anisotropic materials was used to quantitatively predict indentation modulus by using the stiffness matrix of human tibial cortical bone, which was obtained from previous ultrasound studies. After allowing for the effects of specimen preparation (dehydrated specimens in nanoindentation tests vs. moist specimens in ultrasound tests) and the structural properties of bone (different microcomponents with different mechanical properties), there were no statistically significant differences between the corrected experimental indentation modulus (Mexp) values and corresponding predicted indentation modulus (Mpre) values (two-tailed unpaired t-test, P < 0.5). The variation of Mpre values was found to exhibit the same trends as the corrected Mexp data. These results show that the effects of anisotropy on nanoindentation measurements can be quantitatively evaluated. © 2002 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many biological materials are known to be anisotropic. In particular, microstructural components of biological materials may grow in a preferred direction, giving rise to anisotropy in the microstructure. Nanoindentation has been shown to be an effective technique for determining the mechanical properties of microstructures as small as a few microns. However, the effects of anisotropy on the properties measured by nanoindentation have not been fully addressed. This study presents a method to account for the effects of anisotropy on elastic properties measured by nanoindentation. This method is used to correlate elastic properties determined from earlier nanoindentation experiments and from earlier ultrasonic velocity measurements in human tibial cortical bone. Also presented is a procedure to determine anisotropic elastic moduli from indentation measurements in multiple directions. © 2001 John Wiley & Sons, Inc. J Biomed Mater Res.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single crystal Mo3Si specimens were grown and tested at room temperature using established nanoindentation techniques at various crystallographic orientations. The indentation modulus and hardness were obtained for loads that were large enough to determine bulk properties, yet small enough to avoid cracking in the specimens. From the indentation modulus results, anisotropic elastic constants were determined. As load was initially increased to approximately 1.5 mN, the hardness exhibited a sudden drop that corresponded to a jump in displacement. The resolved shear stress that was determined from initial yielding was 10-15% of the shear modulus, but 3 to 4 times the value obtained from the bulk hardness. Non-contact atomic force microscopy images in the vicinity of indents revealed features consistent with {100}(010) slip.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problems of constructing the selfsrtucturized systems of memory of intelligence information processing tools, allowing formation of associative links in the memory, hierarchical organization and classification, generating concepts in the process of the information input, are discussed. The principles and methods for realization of selfstructurized systems on basis of hierarchic network structures of some special class – growing pyramidal network are studied. The algorithms for building, learning and recognition on basis of such type network structures are proposed. The examples of practical application are demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recognition of the object contours in the image as sequences of digital straight segments and/or digital curve arcs is considered in this article. The definitions of digital straight segments and of digital curve arcs are proposed. The methods and programs to recognize the object contours are represented. The algorithm to recognize the digital straight segments is formulated in terms of the growing pyramidal networks taking into account the conceptual model of memory and identification (Rabinovich [4]).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The requirements for the memory structuring of intelligent systems are discussed. Simultaneously with the introduction of information into memory there should take place the processes of association links (bonds) formation, hierarchy systematizing, classification and concept formation. The growing pyramidal networks (GPN) meet these requirements. Many years of experience of GPN application for data analyses in chemistry and material studies proves their sufficiently high potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

his article presents some of the results of the Ph.D. thesis Class Association Rule Mining Using MultiDimensional Numbered Information Spaces by Iliya Mitov (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt University, Faculty of Science on 15 November 2011 in Belgium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.7, I.7.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute posterior vitreous detachment (PVD) is the most common cause of retinal detachment. The management of this condition can be variable and often undue reliance is placed upon associated signs and symptoms which can be a poor indicator of pathology. Optometrists undertake a number of extended roles, however involvement in vitreo-retinal sub-specialities appears to be limited. One objective was to directly compare an optometrist and ophthalmologist in the assessment of patients with PVD, for this a high level of agreement was found (95% sensitivity, 99% specificity, 0.94 kappa). A review of 1107 patients diagnosed with acute PVD that were re-evaluated in a PVD clinic a few weeks later was undertaken to determine whether such reviews are necessary. One-fifth of patients were found to have conditions undiagnosed at the initial assessment, overall 4% of patients had retinal breaks when examined in the PVD clinic and a total of 7% required further intervention. The sensitivity of fundus examination with +90D and 3-mirror lenses was 85-88% for detecting retinal breaks and 7-85% for pigment in the anterior vitreous for the presence of retinal breaks. Therefore patients with acute PVD should be examined by indirect ophthalmoscopy with indentation at the onset of PVD and 4-6 weeks later. The treatment of retinal breaks with laser retinopexy is performed by ophthalmologists with a primary success rate 54-85%. In a pioneering development, an optometrist undertaking this role achieved a comparable primary success rate (79%). Mid-vitreous opacities associated with PVD are described, and noted in 100% of eyes with PVD. The recognition of this sign is important in the diagnosis of PVD and retinal breaks. The importance of diagnostic imaging is also demonstrated, however the timing in relation to onset may be vital.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, an Atomic Force Microscopy (AFM) roughness analysis was performed on non-commercial Nitinol alloys with Electropolished (EP) and Magneto-Electropolished (MEP) surface treatments and commercially available stents by measuring Root-Mean-Square (RMS) , Average Roughness (Ra), and Surface Area (SA) values at various dimensional areas on the alloy surfaces, ranging from (800 x 800 nm) to (115 x 115µm), and (800 x 800 nm) to (40 x 40 µm) on the commercial stents. Results showed that NiTi-Ta 10 wt% with an EP surface treatment yielded the highest overall roughness, while the NiTi-Cu 10 wt% alloy had the lowest roughness when analyzed over (115 x 115 µm). Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis revealed unique surface morphologies for surface treated alloys, as well as an aggregation of ternary elements Cr and Cu at grain boundaries in MEP and EP surface treated alloys, and non-surface treated alloys. Such surface micro-patterning on ternary Nitinol alloys could increase cellular adhesion and accelerate surface endothelialization of endovascular stents, thus reducing the likelihood of in-stent restenosis and provide insight into hemodynamic flow regimes and the corrosion behavior of an implantable device influenced from such surface micro-patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in multiscale material modeling of structural concrete have created an upsurge of interest in the accurate evaluation of mechanical properties and volume fractions of its nano constituents. The task is accomplished by analyzing the response of a material to indentation, obtained as an outcome of a nanoindentation experiment, using a procedure called the Oliver and Pharr (OP) method. Despite its widespread use, the accuracy of this method is often questioned when it is applied to the data from heterogeneous materials or from the materials that show pile-up and sink-in during indentation, which necessitates the development of an alternative method. ^ In this study, a model is developed within the framework defined by contact mechanics to compute the nanomechanical properties of a material from its indentation response. Unlike the OP method, indentation energies are employed in the form of dimensionless constants to evaluate model parameters. Analysis of the load-displacement data pertaining to a wide range of materials revealed that the energy constants may be used to determine the indenter tip bluntness, hardness and initial unloading stiffness of the material. The proposed model has two main advantages: (1) it does not require the computation of the contact area, a source of error in the existing method; and (2) it incorporates the effect of peak indentation load, dwelling period and indenter tip bluntness on the measured mechanical properties explicitly. ^ Indentation tests are also carried out on samples from cement paste to validate the energy based model developed herein by determining the elastic modulus and hardness of different phases of the paste. As a consequence, it has been found that the model computes the mechanical properties in close agreement with that obtained by the OP method; a discrepancy, though insignificant, is observed more in the case of C-S-H than in the anhydrous phase. Nevertheless, the proposed method is computationally efficient, and thus it is highly suitable when the grid indentation technique is required to be performed. In addition, several empirical relations are developed that are found to be crucial in understanding the nanomechanical behavior of cementitious materials.^