989 resultados para PT
Resumo:
The structure of the chiral kinked Pt{531} surface has been determined by low-energy electron diffraction intensity-versus-energy (LEED-IV) analysis and density functional theory (DFT). Large contractions and expansions of the vertical interlayer distances with respect to the bulk-terminated surface geometry were found for the first six layers (LEED: d(12) = 0.44 angstrom, d(23) = 0.69 angstrom, d(34) = 0.49 angstrom, d(45) = 0.95 angstrom, d(56) = 0.56 angstrom; DFT: d(12) = 0.51 angstrom, d(23) = 0.55 angstrom, d(34) = 0.74 angstrom, d(45) = 0.78 angstrom, d(56) = 0.63 angstrom; d(bulk) = 0.66 angstrom). Energy-dependent cancellations of LEED spots over unusually large energy ranges, up to 100 eV, can be explained by surface roughness and reproduced by applying a model involving 0.25 ML of vacancies and adatoms in the scattering calculations. The agreement between the results from LEED and DFT is not as good as in other cases, which could be due to this roughness of the real surface.
Resumo:
The structure of the mixed p(3x3)-(3OH+3H(2)O) phase on Pt{111} has been investigated by low-energy electron diffraction-IV structure analysis. The OH+H2O overlayer consists of hexagonal rings of coplanar oxygen atoms interlinked by hydrogen bonds. Lateral shifts of the O atoms away from atop sites result in different O-O separations and hexagons with only large separations (2.81 and 3.02 angstrom) linked by hexagons with alternating separations of 2.49 and 2.81/3.02 A. This unusual pattern is consistent with a hydrogen-bonded network in which water is adsorbed in cyclic rings separated by OH in a p(3x3) structure. The topmost two layers of the Pt atoms relax inwards with respect to the clean surface and both show vertical buckling of up to 0.06 angstrom. In addition, significant shifts away from the lateral bulk positions have been found for the second layer of Pt atoms. (C) 2005 American Institute of Physics.
Resumo:
The adsorption of oxygen on the chiral Pt{531} surface was studied by high-resolution X-ray photoelectron spectroscopy (HRXPS) and low energy electron diffraction (LEED). After the surface is annealed in oxygen (3 x 10(-7) mbar), three O 1s peaks are observed in XPS. One peak, at 529.5 eV, is assigned to chemisorbed oxygen; it disappears after annealing in vacuo to temperatures above 900 K. The other two peaks at 530.8 and 532.3 eV are stable up to at least 1250 K. They are associated with oxide clusters on the surface. These clusters readily react with coadsorbed carbon monoxide at temperatures between 315 and 620 K.
Resumo:
Analysis and modeling of X-ray and neutron Bragg and total diffraction data show that the compounds referred to in the literature as “Pd(CN)2”and“Pt(CN)2” are nanocrystalline materials containing of small sheets of vertex-sharing square-planar M(CN)4 units, layered in a disordered manner with an intersheet separation of 3.44 A at 300 K. The small size of the crystallites means that the sheets’ edges form a significant fraction of each material. The Pd(CN)2 nanocrystallites studied using total neutron diffraction are terminated by water and the Pt(CN)2 nanocrystallites by ammonia, in place of half of the terminal cyanide groups, thus maintaining charge neutrality. The neutron samples contain sheets of approximate dimensions 30 A x 30 A. For sheets of the size we describe, our structural models predict compositions of Pd(CN)2-xH2O and Pt(CN)2-yNH3 (x = y = 0.29). These values are in good agreement with those obtained from total neutron diffraction and thermal analysis, and are also supported by infrared and Raman spectroscopy measurements. It is also possible to prepare related compounds Pd(CN)2-pNH3 and Pt(CN)2-qH2O, in which the terminating groups are exchanged. Additional samples showing sheet sizes in the range 10 A x 10 A (y = 0.67) to 80 A x 80 A (p = q = 0.12), as determined by X-ray diffraction, have been prepared. The related mixed-metal phase, Pd1/2Pt1/2(CN)2-qH2O(q = 0.50), is also nanocrystalline (sheet size 15 A x 15 A). In all cases, the interiors of the sheets are isostructural with those found in Ni(CN)2. Removal of the final traces of water or ammonia by heating results in decomposition of the compounds to Pd and Pt metal, or in the case of the mixed-metal cyanide, the alloy, Pd1/2Pt1/2, making it impossible to prepare the simple cyanides, Pd(CN)2, Pt(CN)2 or Pd1/2Pt1/2(CN)2, by this method.
Resumo:
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = −S(CH2)4S−, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.
Resumo:
Heterobimetallic complexes [(P−P)Pt(μ-S−S)Rh(cod)]ClO4 (P−P = (PPh3)2, Ph2P(CH2)3PPh2 (dppp), and Ph2P(CH2)4PPh2 (dppb); S−S = -S(CH2)2S- (EDT), -S(CH2)3S- (PDT), -S(CH2)4S- (BDT), cod = 1,5-cyclooctadiene) reacted with CO to form the carbonyl complexes [(P−P)Pt(μ-S−S)Rh(CO)2]ClO4 and then with PR3 ligands to give [(P−P)Pt(μ-S−S)Rh(CO)(PR3)]ClO4. The binuclear framework of these cod complexes was maintained in the reactions reported. The cod complexes were tested as catalyst precursors in the hydroformylation of styrene. HPNMR in situ studies showed that mononuclear species formed under catalytic conditions.
Resumo:
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.
Resumo:
Adsorption of glycine on Ptf111g under UHV conditions and in different aqueous environments was studied by XPS (UHV and ambient pressure) and NEXAFS. Under UHV conditions, glycine adsorbs in its neutral molecular state up to about 0.15 ML. Further deposition leads to the formation of an additional zwitterionic species, which is in direct contact with the substrate surface, followed by the growth of multilayers, which also consist of zwitterions. The neutral surface species is most stable and decomposes at 360 K through a multi-step process which includes the formation of methylamine and carbon monoxide. When glycine and water are co-adsorbed in UHV at low temperatures (< 170 K) inter-layer diffusion is inhibited and the surface composition depends on the adsorption sequence. Water adsorbed on top of a glycine layer does not lead to significant changes in its chemical state. When glycine is adsorbed on top of a pre-adsorbed chemisorbed water layer or thick ice layer, however, it is found in its zwitterionic state, even at low coverage. No difference is seen in the chemical state of glycine when the layers are exposed to ambient water vapor pressure up to 0.2 Torr at temperatures above 300 K. Also the decomposition temperature stays the same, 360 K, irrespective of the water vapor pressure. Only the reaction path of the decomposition products is affected by ambient water vapor.
Resumo:
Photoelectron spectroscopy and scanning tunneling microscopy have been used to investigate how the oxidation state of Ce in CeO2-x(111) ultrathin films is influenced by the presence of Pd nanoparticles. Pd induces an increase in the concentration of Ce3+ cations, which is interpreted as charge transfer from Pd to CeO2-x(111) on the basis of DFT+U calculations. Charge transfer from Pd to Ce4+ is found to be energetically favorable even for individual Pd adatoms. These results have implications for our understanding of the redox behavior of ceria-based model catalyst systems.
Resumo:
The state-resolved reaction probability of CH4 on Pt�110-�1�2 was measured as a function of CH4 translational energy for four vibrational eigenstates comprising different amounts of C-H stretch and bend excitation. Mode-specific reactivity is observed both between states from different polyads and between isoenergetic states belonging to the same polyad of CH4. For the stretch/bend combination states, the vibrational efficacy of reaction activation is observed to be higher than for either pure C-H stretching or pure bending states, demonstrating a concerted role of stretch and bend excitation in C-H bond scission. This concerted role, reflected by the nonadditivity of the vibrational efficacies, is consistent with transition state structures found by ab initio calculations and indicates that current dynamical models of CH4 chemisorption neglect an important degree of freedom by including only C-H stretching motion.
Resumo:
The chemisorption of CH4 on Pt{110}-(1 x 2) has been studied by vibrational analysis of the reaction pathway defined by the potential energy surface and, in time reversal, by first-principles molecular dynamics simulations of CH4 associative desorption, with the electronic structure treated explicitly using density functional theory. We find that the symmetric stretch vibration ν1 is strongly coupled to the reaction coordinate; our results therefore provide a firm theoretical basis for recently reported state-resolved reactivity measurements, which show that excitation of the ν1 normal mode is the most efficient way to enhance the reaction probability
Resumo:
We have investigated the chemisorption of CH3D and CD3H on Pt{11 0}-(1 2) by performing first-principles molecular dynamics simulations of the recombinative desorption of CH3D (from adsorbed methyl and deuterium) and of CD3H (from adsorbed trideuteromethyl and hydrogen). Vibrational analysis of the symmetry adapted internal coordinates of the desorbing molecules shows that excitation of the single C– D (C–H) bond in the parent molecule is strongly correlated with energy excess in the reaction coordinate. The results of the molecular dynamics simulations are consistent with observed mode- and bond-specific reactivity measurements for chemisorption of methane and its isotopomers on platinum and nickel surfaces.
Resumo:
The surface termination of CePt5/Pt(111) is determined experimentally by LEED-IV. In accordance with recent theoretical predictions, a dense Pt terminated surface is being found. Whereas the CePt5 volume lattice comprises Pt kagome layers, additional Pt atoms occupy the associated hole positions at the surface. This finding provides a natural explanation for the remarkable inertness of the CePt5 intermetallic. Implications of the structural relaxations determined by LEED-IV analysis are discussed with regard to observations by scanning tunneling microscopy and electron spectroscopies.
Resumo:
The perpendicular exchange bias and magnetic anisotropy were investigated in IrMn/Pt/[Co/Pt](3) multilayers through the analysis of in-plane and out-of-plane magnetization hysteresis loops. A phenomenological model was used to simulate the in-plane curves and the effective perpendicular anisotropies were obtained employing the area method. The canted state anisotropy was introduced by taking into account the first and second uniaxial anisotropy terms of the ferromagnet with the corresponding uniaxial anisotropy direction allowed to make a nonzero angle with the film`s normal. This angle, obtained from the fittings, was of approximately 15 degrees for IrMn/[Co/Pt](3) film and decreases with the introduction of Pt in the IrMn/Pt/[Co/Pt](3) system, indicating that the Pt interlayer leads to a predominant perpendicular anisotropy. A maximum of the out-of-plane anisotropy was found between 0.5 and 0.6 nm of Pt, whereas a maximum of the perpendicular exchange bias was found at 0.3 nm. These results are very similar to those obtained for IrMn/Cu/[Co/Pt](3) system; however, the decrease of the exchange bias with the spacer thickness is more abrupt and the enhacement of the perpendicular anisotropy is higher for the case of Cu spacer as compared with that of Pt spacer. The existence of a maximum in the perpendicular exchange bias as a function of the Pt layer thickness was attributed to the predominance of the enhancement of exchange bias due to more perpendicular Co moment orientation over the exponential decrease of the ferromagnetic/antiferromagnetic exchange coupling and, consequently, of the exchange-bias field. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
New Pd(II) and Pt(II) complexes [ML2] (HL = a substituted 2,5-dihydro-5-oxo-1H-pyrazolone-1-carbothioamide) have been synthesized by reacting K2MCl4 (M = Pd, Pt) or Pd(OAc)(2) with beta-ketoester thiosemicarbazones. The structures of seven of these complexes were determined by X-ray diffraction. Although all exhibit a distorted square-planar coordination with trans- or (in one case) cis-[MN2S2] kernels, their supramolecular arrangements vary widely from isolated molecules to 3D-networks. The in vitro antitumoral assays performed with two HL ligands and their metal complexes showed significant cytostatic activity for the latter, with the most active [ML2] derivative (a palladium complex) being about sixteen times more active than cis-DDP against the cis-platinum-resistant cell line A2780cisR. (c) 2007 Elsevier Inc. All rights reserved.