996 resultados para PROTONIC ACID DOPING
Resumo:
A high-throughput screening was employed to identify new compounds in Cu(CH3COO)(2)center dot H2O-NIPA-heterocyclic ligand systems. Of the compounds identified, three compounds, Cu-3{(NO2)-C6H3-(COO)(2)}(3)(C3N6H6)] (1), Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2)}(CN4H)]center dot-(H2O) (II), and Cu-2(mu(3)-OH)(H2O){(NO2)-C6H3-(COO)(2}-)(CN5H2)]center dot 2(H2O) (III), have been isolated as good quality single crystals by employing conventional hydrothermal methods. Three other compounds, Cu-2{(NO2)-C6H3-(COO)(2)}-(CN4H)(H2O) (IIa), Cu-2{(NO2)-C6H3-(COO)(2)}(CN5H2) (IIIa), and Cu-2{(NO2)-C6H3-(COO)(2)}{(CN5H2)(2)}2H(2)O (IIIb), were identified by a combination of elemental analysis, thermogravimetric analysis (TGA), and IR spectroscopic studies, although their structures are yet to be determined. The single crystalline compounds were also characterized by elemental analysis, TGA, IR, UV vis, magnetic, and catalytic studies. The structures of the compounds have paddle wheel (I) and infinite Cu 0(H) Cu chains (II and HI) connected with NLPA and heterocyclic ligands forming two-(II) and three-dimensional (I and III) structures. The bound and lattice water molecules in 11 and 111 could be reversibly removed/inserted without affecting the structure. In the case of II, the removal of water gives rise to a structural transition, but the dehydrated phase reverts back to the original phase on prolonged exposure to atmospheric conditions. Magnetic studies indicate an overall antiferromagnetism in all of the compounds. Lewis acid catalytic studies indicate that compounds II and HI are active for cyanosilylation of imines.
Resumo:
meso-Tetraphenylporphyrin and its metal [zinc(II) and copper(II)] derivatives form both inter and intramolecular complexes with 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB). The nature of interaction is predominantly charge transfer (CT) in origin, with the porphyrin functioning as a II-donor and DTNB as an acceptor. Among the covalently linked intramolecular systems, the magnitude of CT interaction varies with the position (of one of the aryl groups of the porphyrin) to which DTNB is attached as ortho meta > para. Steady-state and time-resolved fluorescence studies revealed electron transfer to be the dominant pathway for the fluorescence quenching in these systems. Steady-state photolysis experiments probed using EPR and optical absorption studies have shown that electron transfer (from the excited singlet state of the porphyrin) to DTNB results in the formation of thiyl radical and production of free thiolate anion. It is found that the products of electrochemical reduction of covalently linked porphyrin-DTNB systems are different from those observed for the photochemical studies.
Resumo:
A family of bile acid-based molecular tweezers (7-9) has been constructed readily from simple precursors. Binding experiments with various electron deficient aromatic compounds showed that tweezer 8 binds trinitrofluorenone 10e with an association constant of 220 M(-1) in CDCl3. Single-crystal X-ray analysis of compound 8 shows aromatic-aromatic interactions producing a two-dimensional lattice of pyrene units. Tweezer 8 was immobilized on Merrifield resin, and binding studies have shown that these data compare well with those of the solution state studies.
Resumo:
C20H35N3O6 (Boc-Aib-DL-Pip-Aib-OMe, Boc = tert-butyloxycarbonyl, Aib = alpha-aminoisobutyric acid, Pip = pipecolic acid, OMe = methoxy), M(r) = 413.5, monoclinic, P2(1)/c, a = 18.055 (3), b = 15.048 (3), c = 17.173 (3) angstrom, beta = 91.7 (1)-degrees, V = 4663.8 (9) angstrom3, Z = 8, D(m) = 1.16, D(x) = 1.178 Mg m-3, lambda(Mo Kalpha) = 0.71069 angstrom, mu = 0.081 mm-1, F(000) = 1792, T = 297 K. The final R value for 4925 [I greater-than-or-equal-to 3sigma(I)] reflections is 0.065 (wR = 0.067). The peptide backbone of the two independent molecules in the asymmetric unit is folded at the -Aib-Pip- sequence to form a type-I (I') beta-bend stabilized by a 1 <-- 4 intramolecular N-H...O=C hydrogen bond between the Aib(3) peptide N-H and Boc urethane C=O groups.
Resumo:
H-1 Magic Angle Spinning (MAS) NMR of layered HNbWO6 . xH(2)O (x = 1.5, 0.5) is carried out at room temperature and at various spinning speeds (1-12 kHz). Results on the fully hydrated sample (x = 1.5) are consistent with the model of diffusion of H3O+ ions within the layers. In the partially dehydrated sample (x = 0.5) an exchange between the distinctly present cage protons and H3O+ protons leads to protonic conduction.
Resumo:
The non-oxidative decarboxylation of aromatic acids is a poorly understood reaction. The transformation of 2,3-dihydroxybenzoic acid to catechol in the fungal metabolism of indole is a prototype of such a reaction. 2,3-Dihydroxybenzoic acid decarboxylase (EC 4.1.1.46) which catalyzes this reaction was purified to homogeneity from anthranilate induced cultures of Aspergillus oryzae using affinity chromatography. The enzyme did not require cofactors like NAD(+), PLP, TPP or metal ions for its activity. There was no spectral evidence for the presence of enzyme bound cofactors. The preparation, which was adjudged homogeneous by the criteria of SDS-PAGE, sedimentation analysis and N-terminal analysis, was characterized for its physicochemical and kinetic parameters. The enzyme was inactivated by group-specific modifiers like diethyl pyrocarbonate (DEPC) and N-ethylmaleimide (NEM). The kinetics of inactivation by DEPC suggested the presence of a single class of essential histidine residues, the second order rate constant of inactivation for which was 12.5 M(-1) min(-1). A single class of cysteine residues was modified by NEM with a second order rate constant of 33 M(-1) min(-1). Substrate analogues protected the enzyme against inactivation by both DEPC and NEM, suggesting the Location of the essential histidine and cysteine to be at the active site of the enzyme. The incorporation of radiolabelled NEM in a differential labelling experiment was 0.73 mol per mol subunit confirming the presence of a single essential cysteine per active-site. Differentially labelled enzyme was enzymatically cleaved and the peptide bearing the label was purified and sequenced. The active-site peptide LLGLAETCK and the N-terminal sequence MLGKIALEEAFALPRFEEKT did not bear any similarity to sequences reported in the Swiss-Prot Protein Sequence Databank, a reflection probably of the unique primary structure of this novel enzyme. The sequences reported in this study will appear in the Swiss-Prot Protein Sequence Databank under the accession number P80402.
Resumo:
In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4:C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.
Resumo:
We have carried out H-1 Magic Angle Spinning (MAS) NMR measurements at various spinning speeds (1-12 kHz) on HNbWO(6)xH(2)O (x = 0 and 1) defect pyrochlore systems. The variation of the line width with the spinning speed in the two systems points towards the presence of motions with different time scales. We conclude that the mechanism of conduction in both the compounds are similar except that the proton hopping in hydrated form is assisted by the water of hydration.
Resumo:
NSP3, an acidic nonstructural protein, encoded by gene 7 has been implicated as the key player in the assembly of the 11 viral plus-strand RNAs into the early replication intermediates during rotavirus morphogenesis. To date, the sequence or NSP3 from only three animal rotaviruses (SA11, SA114F, and bovine UK) has been determined and that from a human strain has not been reported. To determine the genetic diversity among gene 7 alleles from group A rotaviruses, the nucleotide sequence of the NSP3 gene from 13 strains belonging to nine different G serotypes, from both humans and animals, has been determined. Based on the amino acid sequence identity as well as phylogenetic analysis, NSP3 from group A rotaviruses falls into three evolutionarily related groups, i.e., the SA11 group, the Wa group, and the S2 group. The SA 11/SA114F gene appears to have a distant ancestral origin from that of the others and codes for a polypeptide of 315 amino acids (aa) in length. NSP3 from all other group A rotaviruses is only 313 aa in length because of a 2-amino-acid deletion near the carboxy-terminus, While the SA114F gene has the longest 3' untranslated region (UTR) of 132 nucleotides, that from other strains suffered deletions of varying lengths at two positions downstream of the translational termination codon. In spite of the divergence of the nucleotide (nt) sequence in the protein coding region, a stretch of about 80 nt in the 3' UTR is highly conserved in the NSP3 gene from all the strains. This conserved sequence in the 3' UTR might play an important role in the regulation of expression of the NSP3 gene. (C) 1995 Academic Press, Inc.
Resumo:
A strategy for the synthesis of new macrocycles built on 7-deoxycholic acid is described.
Resumo:
A regioselective reductive demethoxylation of dimethyl and mixed ketals, using sodium cyanoborohydride in the presence of a catalytic amount of tributylchlorostannane as Lewis acid in refluxing tert-butanol is described.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity
Resumo:
Electrooxidation of methanol has been studied in sulphuric acid electrolyte at 60 degrees C on carbon-supported Pt-WO3-x, electrodes employing varying amounts of WO3-x,. It is found that the electrodes containing (3:1) Pt-WO3-x, composite catalyst exhibit a higher catalytic activity towards methanol electrooxidation than platinized carbon electrodes without WO3-x. In the light of the XPS and XRD data on the carbon-supported (3:1) Pt-WOx sample, it is speculated that the WOx is present in the form of an oxyhydroxide, which can promote surface oxy-species on platinum by proton transfer.
Resumo:
The enantioselective synthesis of the natural products cladospolide B, cladospolide C, and iso-cladospolide B has been accomplished from tartaric acid. Key reactions in the synthetic sequence include the elaboration of a gamma-hydroxy amide derived from tartaric acid via alkene cross metathesis, Yamaguchi lactonization, and ring closing metathesis. (C) 2011 Elsevier Ltd. All rights reserved.