994 resultados para POLY(ETHER IMIDE)S


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible poly(vinylidene chloride-co-vinyl chloride)/TiO2 nanocomposite films were fabricated and their dielectric properties were studied. The structural characterization of the composites was carried out using various spectroscopic and electron microscopic techniques. From the thermal analysis of the composites, an improvement in the thermal properties was observed for the composites, as compared to the neat polymer. An increase in the DC conductivity was also observed in the composites, which was due to the tunneling of charge carriers. Furthermore, it was observed that the optimal loading of titania in the matrix was required, above which the properties of the composites showed deterioration. The study of the dielectric properties of the composites supports their use in microelectronic devices as separator in charge storage devices and in transistors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheology of a poly(alpha-olefin) base oil (PAO) in a sliding point contact has been investigated by total internal reflection (TIR) Raman spectroscopy. TIR Raman has the sensitivity to analyse nanometer-thick lubricant films in a tribological contact. The Raman signal generated from the sliding contact was used to determine the lubricant film thickness. The experimentally obtained film thicknesses were compared with theoretical calculations and a transition from Newtonian to non-Newtonian behaviour was observed at high shear rates. The Raman spectra showed no significant changes in the conformation of the PAO chains under the applied conditions of pressure and shear, but the polarisation dependence of the spectra revealed a preferred orientation of the hydrocarbon side chains in the shear-thinned region. Monolayers formed by a boundary lubricant, arachidic acid, dissolved in the PAO could be detected on the surfaces in the elastohydrodynamic regime.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dibenzyl derivative of poly(3,4-propylenedioxythiophene) (PProDOT-Bz(2)) thin film is deposited onto ITO-coated glass substrate by electropolymerization technique. The electropolymerization of ProDOT-Bz(2) is carried out by a three-electrode electrochemical cell. The cyclic voltammogram shows the redox properties of electrochemically prepared films deposited at different scan rates. The thin films prepared were characterized for its morphological properties to study the homogeniety. Classic six-layer structure of PProDOT-Bz(2) electrochromic device using this material was fabricated and reported for the first and its characterizations such as spectroelectrochemical, switching kinetics, and chronoamperometric studies are performed. The color contrast of the thin film and the device achieved are 64 and 40%, respectively, at lambda(max) (628 nm). The switching time is recorded and the observed values are 5 s from the coloring state to the bleaching state and vice versa. The chronoamperometry shows that the device performed up to 400 cycles, and it is capable of working up to 35 cycles without any degradation. (C) 2014 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a hybrid-polymer nanocomposite film, based on polyvinyl butyral/amino-silane functionalized nano alumina, was fabricated by melt processing. The calcium degradation measurements suggest the functionalized nanocomposite films exhibit higher resistance towards moisture penetration as compared to the neat alumina loaded films. Thermal stability, mechanical strength, and contact angle studies of the composites were also conducted to evaluate the performance of the functionalized alumina loaded films. These nanocomposite films were encapsulated over Al/P3HT/ITO Schottky structured device. The changes observed in the current density of the devices to the applied voltage before and after accelerated aging conditions are presented. The nanocomposite with functionalized alumina films exhibits 50% change in current density, which is superior to that attained with neat and non-functionalized films. POLYM. COMPOS., 35:1426-1435, 2014. (c) 2013 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photocatalytic disassembly of tertiary amine-based poly(propyl ether imine) dendrimers, in the presence of either 9,10-anthraquinone or riboflavin tetraacetate and O-2(g), leads to di- and tripropanolamine monomers. An application is shown by solubilisation of a water-insoluble dye, Sudan I, in aq. dendrimer solution ('catch'), followed by its `release' upon disassembly of the dendrimer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the current study, amino silane functionalized cenosphere particles was used as a reinforcing filler in poly(vinyl butyral) matrix and were made by melt blending. The changes observed in the dielectric performance of the composite films with varying weight percentage of cenosphere particle in the matrix were investigated. The dielectric property and impedance spectroscopy were evaluated as a function of applied frequency in the range of 50 Hz to 5 MHz. It is observed that, because of orientation polarization of the PVB polymer, the permittivity and impedance decrease, whereas conductivity increases. Tangent loss graph indicates that the property of the matrix is associated with geometrical fill factor and the lowest quality factor. Therefore, above 10 kHz, these composites can be considered as dielectric loss-less material. (C) 2013 Society of Plastics Engineers

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) with different surface-functionalized multiwall carbon nanotubes (MWNTs) were prepared by solution blending to design materials with tunable EMI (electromagnetic interference) shielding. Different MWNTs like pristine, amine (similar to NH2), and carboxyl acid (similar to COOH) functionalized were incorporated in the polymer by solution blending. The specific interaction driven localization of MWNTs in the blend during annealing was monitored using contact mode AFM (atomic force microscopy) on thin films. Surface composition of the phase separated blends was further evaluated using X-ray photoelectron spectroscopy (XPS). The localization of MWNTs in a given phase in the bulk was further supported by selective dissolution experiments. Solution-casted PS/PMMA (50/50, wt/wt) blend exhibited a cocontinuous morphology on annealing for 30 min, whereas on longer annealing times it coarsened into matrix-droplet type of morphology. Interestingly, both pristine MWNTs and NH2-MWNTs resulted in interconnected structures of PMMA in PS matrix upon annealing, whereas COOH-MWNTs were localized in the PMMA droplets. Room-temperature electrical conductivity and electromagnetic shielding effectiveness (SE) were measured in a broad range of frequency. It was observed that both electrical conductivity and SE were strongly contingent on the type of surface functional groups on the MWNTs. The thermal conductivity of the blends was measured with laser flash technique at different temperatures. Interestingly, the SE for blends with pristine and NH2-MWNTs was >-24 dB at room temperature, which is commercially important, and with very marginal variation in thermal conductivity in the temperature range of 303-343 K. The gelation of MWNTs in the blends resulted in a higher SE than those obtained using the composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of silver nanoparticles (sNP) on the demixing and the evolution of morphology in off-critical blends of 90/10 and 10/90 (wt/wt) PS/PVME polystyrene/poly(vinyl methyl ether)] was probed here using shear rheology and optical microscopy. The faster component (PVME) has a higher molecular weight (80 kDa) than the slower component (PS, 35 kDa), which makes this system quite interesting to study with respect to the evolving morphology, as the blends transit through the binodal and the spinodal envelopes. An unusual demixing behavior was observed in both PVME rich and PS rich blends. Temperature modulated differential scanning calorimetry measurements showed that the T-g value for the blends with sNP was slightly lower than that of the neat blends. A decreased volume of cooperativity at T-g suggests confined segmental dynamics in the presence of sNP. Although, the addition of sNP had no influence on the thermodynamic demixing temperature, it significantly altered the elasticity of the minor component during the transition of the blend from the homogeneous to the heterogeneous state. This is manifested from energetically driven localization of the sNP in the PVME phase during demixing. As a direct consequence of this, the formation of the microstructures upon demixing was observed to be delayed in the presence of sNP. Interestingly, in the intermediate quench depth, the higher viscoelastic phase evolved as an interconnected network, which subsequently coarsened into discrete droplets in the late stages for the 90/10 PS/PVME blends. Similar observations were made for 10/90 PS/PVME blends where threads of PVME appeared at deeper quench depths in the presence of sNP. The interconnected network formation of the minor phase (here PVME), which is also the faster component in the blend, was different from the usual demixing behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to develop a versatile strategy for preparing biodegradable polymers with tunable properties for biomedical applications. A family of xylitol-based cross-linked polyesters was synthesized by melt condensation. The effect of systematic variation of chain length of the diacid, stoichiometric ratio, and postpolymerization curing time on the physicochemical properties was characterized. The degradation rate decreased as the chain length of the diacid increased. The polyesters synthesized by this approach possess a diverse spectrum of degradation (ranging from similar to 4 to 100% degradation in 7 days), mechanical strength (from 0.5 to similar to 15 MPa) and controlled release properties. The degradation was a first-order process and the rate constant of degradation decreased linearly as the hydrophobicity of the polyester increased. In controlled release studies, the order of diffusion increased with chain length and curing time. The polymers were found to be cytocompatible and are thus suitable for possible use as biodegradable polymers. This work demonstrates that this particular combinatorial approach to polymer synthesis can be used to prepare biomaterials with independently tunable properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demixing in an LCST mixture of PS/PVME (polystyrene/poly(vinyl methyl ether)) was probed here by melt rheology in the presence of gold nanoparticles which were densely coated with varying graft lengths of PS. The graft density for the gold nanoparticles coated with 3 kDa PS was ca. Sigma = 1.7 chains/nm(2), and that for 53 kDa PS was ca. Sigma = 1.2 chains/nm(2). The evolution of morphology, as the blends transit through the metastable and the unstable envelopes of the phase diagram, and the localization of the gold nanoparticles upon demixing were monitored using in situ hot-stage AFM and confocal Raman imaging. Interestingly, gold nanoparticles coated with 3 kDa polystyrene (PS(3 kDa)-g-nAu) were localized in the PVME phase, whereas gold nanoparticles coated with 53 kDa polystyrene (PS(53 kDa)-g-nAu) were localized in the PS phase of the blend. While the localization of PS(3 kDa)-g-nAu in the PVME phase can be expected to be of entropic origin due to expulsion from the PS phase as R-g,R-matrix chains > R-g,R-grafted chains (where R-g is the radius of gyration of the polymer chain), the localization of PS(53 kDa)-g-nAu in the PS phase is believed to be facilitated by favorable melt/graft interactions. The latter nanoparticles also delayed the demixing by 12 degrees C with respect to the neat mixture. The observed changes were addressed in context to enthalpic interactions between the grafted PS and the free PS, the entropic losses (deformational entropic losses on blending, translational entropic loss of the free PS, and the conformational entropic loss of the grafted PS), and the interface of the grafted and the free chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite advances in regenerative medicine, the cost of such therapies is beyond the reach of many patients globally in part due to the use of expensive biomedical polymers. Large volumes of poly(ethylene terephthalate) (PET) in municipal waste is a potential source of low cost polymers. A novel polyester was prepared by a catalyst-free, melt polycondensation reaction of bis(hydroxyethylene) terephthalate derived from PET post-consumer waste with other multi-functional monomers from renewable sources such as citric acid, sebacic acid and D-mannitol. The mechanical properties and degradation rate of the polyester can be tuned by varying the composition and the post-polymerization time. The polyester was found to be elastomeric, showed excellent cytocompatibility in vitro and elicited minimal immune response in vivo. Three-dimensional porous scaffolds facilitated osteogenic differentiation and mineralization. This class of polyester derived from low cost, recycled waste and renewable sources is a promising candidate for use in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (M-s) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we show that PARP inhibitor-mediated cell death of RAD51C-deficient cells occur by NHEJ-driven illegitimate repair of one-ended double-strand breaks, and the hypomorphic RAD51C pathological mutant cells can be targeted by `synergistic toxicity' induced by low-dose PARP inhibitor and IR.Poly (ADP-ribose) polymerase 1 (PARP1) inhibitors are actively under clinical trials for the treatment of breast and ovarian cancers that arise due to mutations in BRCA1 and BRCA2. The RAD51 paralog RAD51C has been identified as a breast and ovarian cancer susceptibility gene. The pathological RAD51C mutants that were identified in cancer patients are hypomorphic with partial repair function. However, targeting cancer cells that express hypomorphic mutants of RAD51C is highly challenging. Here, we report that RAD51C-deficient cells can be targeted by a `synthetic lethal' approach using PARP inhibitor and this sensitivity was attributed to accumulation of cells in the G(2)/M and chromosomal aberrations. In addition, spontaneous hyperactivation of PARP1 was evident in RAD51C-deficient cells. Interestingly, RAD51C-negative cells exhibited enhanced recruitment of non-homologous end joining (NHEJ) proteins onto chromatin and this accumulation correlated with increased activity of error-prone NHEJ as well as genome instability leading to cell death. Notably, inhibition of DNA-PKcs or depletion of KU70 or Ligase IV rescued this phenotype. Strikingly, stimulation of NHEJ by low dose of ionizing radiation (IR) in the PARP inhibitor-treated RAD51C-deficient cells and cells expressing pathological RAD51C mutants induced enhanced toxicity `synergistically'. These results demonstrate that cancer cells arising due to hypomorphic mutations in RAD51C can be specifically targeted by a `synergistic approach' and imply that this strategy can be potentially applied to cancers with hypomorphic mutations in other homologous recombination pathway genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Itaconic acid is a bio-sourced dicarboxylic acid that carries a double bond; although several reports have dealt with the radical-initiated chain polymerization of dialkyl itaconates, only a few studies have utilized it as a di-acid monomer to prepare polyesters. In this study, we demonstrate that dibutyl itaconate can be melt-condensed with aliphatic diols to generate unsaturated polyesters; importantly, we show that the double bonds remain unaffected during the melt polymerization. A particularly useful attribute of these polyesters is that the exo-chain double bonds are conjugated to the ester carbonyl and, therefore, can serve as excellent Michael acceptors. A variety of organic thiols, such as alkane thiols, MPEG thiol, thioglycerol, derivatized cysteine etc., were shown to quantitatively Michael-add to the exo-chain double bonds and generate interesting functionalized polyesters. Similarly, organic amines, such as N-methyl-benzylamine, diallyl amine and proline, also add across the double bond; thus, these poly(alkylene itaconate)s could serve as potentially bio-benign polyesters that could be quantitatively transformed into a variety of interesting and potentially useful functionalized polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, branched poly(ethyleneimine), BPEI, was synthesized from carboxylic acid terminated multi-walled carbon nanotubes (c-MWNTs) and characterized using FTIR, TEM and TGA. The BPEI was then chemically grafted onto MWNTs to enhance the interfacial adhesion with the epoxy matrix. The epoxy composites with c-MWNTs and the BPEI-g-MWNTs were prepared using a sonication and mechanical stirring method, followed by curing at 100 degrees C and post-curing at 120 degrees C. The dynamic mechanical thermal analysis showed an impressive 49% increment in the storage elastic modulus in the composites. In addition, the nanoindentation on the composites exhibited significant improvement in the hardness and decrease in the plasticity index in the presence of the BPEI-g-MWNTs. Thus, epoxy composites with BPEI-g-MWNTs can be further explored as self-healing materials.