976 resultados para PEROXIDE REDUCTASE
Resumo:
Tamoxifen has been suggested to produce beneficial cardiovascular effects, although the mechanisms for these effects are not fully known. Moreover, although tamoxifen metabolites may exhibit 30-100 times higher potency than the parent drug, no previous study has compared the effects produced by tamoxifen and its metabolites on vascular function. Here, we assessed the vascular responses to acetylcholine and sodium nitroprusside on perfused hindquarter vascular bed of rats treated with tamoxifen or its main metabolites (N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen, and endoxifen) for 2 weeks. Plasma and whole-blood thiobarbituric acid reactive substances (TBARS) concentrations were determined using a fluorometric method. Plasma nitrite and NOx (nitrite + nitrate) concentrations were determined using an ozone-based chemiluminescence assay and Griess reaction, respectively. Treatment with tamoxifen reduced the responses to acetylcholine (pD(2) = 2.2 +/- 0.06 and 1.9 +/- 0.05 after vehicle and tamoxifen, respectively; P < 0.05), while its metabolites improved these responses (pD(2) = 2.5 +/- 0.04 after N-desmethyl-tamoxifen, 2.5 +/- 0.03 after 4-hydroxy-tamoxifen, and 2.6 +/- 0.08 after endoxifen; P < 0.01). Tamoxifen and its metabolites showed no effect on endothelial-independent responses to sodium nitroprusside (P > 0.05). While tamoxifen treatment resulted in significantly higher plasma and whole blood lipid peroxide levels (37% and 62%, respectively; both P < 0.05), its metabolites significantly decreased lipid peroxide levels (by approximately 50%; P < 0.05). While treatment with tamoxifen decreased the concentrations of markers of nitric oxide formation by approximately 50% (P < 0.05), tamoxifen metabolites had no effect on these parameters (P > 0.05). These results suggest that while tamoxifen produces detrimental effects, its metabolites produce counteracting beneficial effects on the vascular system and on nitric oxide/reactive oxygen species formation.
Resumo:
Glutathione (GSH) has an important dual role in parasite-host relationship in Leishmania major infection. Our previous studies showed that both antioxidant systems, glutathione and trypanothione/trypanothione reductase, participate in the protection of Leishmania against the toxic effect of nitrogen-derived reactive species. On the other hand, GSH also is very important to the modulation of the effective immune response, inducting NO production and leishmanicidal activity of macrophages. In the present study, we investigated the role of host GSH during the course of L. major infection, analysing the size of footpad lesions and parasite load from mice treated with two GSH modulators, N-acethyl-L-cysteine (NAC) and buthionine sulphoximine (BSO). Resistant mice treated with BSO, which depletes GSH develop exacerbated lesions, but only harbour higher parasite load in their lesions 2 weeks post-infection. Although the NAC treatment does not affect the footpad lesions development in susceptible BALB/c mice, it significantly reduced the tissue parasitism in the lesions throughout the course of infection. Interestingly, the treatment with BSO did not change the course of L. major infection on susceptible mice when compared with nontreated mice. These results suggest that GSH is an important antioxidant modulator during anti-Leishmania immune response in vivo.
Resumo:
Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.
Resumo:
Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)
Resumo:
The aim of this study was to evaluate the frequency of polymorphisms in the TYMS, XRCC1, and ERCC2 DNA repair genes in pediatric patients with acute lymphoblastic leukemia using polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP) approaches. The study was conducted in 206 patients and 364 controls from a Brazilian population. No significant differences were observed among the analyzed groups regarding XRCC1 codon 399 and codon 194 and ERCC2 codon 751 and codon 312 polymorphisms. The TYMS 3R variant allele was significantly associated with a reduced risk of childhood ALL, represented by the sum of heterozygous and polymorphic homozygous genotypes (odds ratio 0.60; 95% confidence interval 0.37-0.99). The results suggest that polymorphism in TYMS may play a protective role against the development of childhood ALL.
Resumo:
Nowadays, the great saphenous vein is the vascular conduit that is most frequently employed in coronary and peripheral revascularization surgery. It is known that saphenous vein bypass grafts have shorter patency than arterial ones, partly because the wall of the normal saphenous vein has different structural and functional characteristics. The features of this vein can be affected by the large distention pressures it is submitted to during its preparation and insertion into the arterial system. Indeed, a vein graft is subjected to considerable changes in hemodynamic forces upon implantation into the arterial circulation, since it is transplanted from a non-pulsatile, low-pressure, low-flow environment with minimal shear stress to a high-pressure system with pulsatile flow, where it undergoes cyclic strain and elevated shear. These changes can be responsible for functional and morphological alterations in the vessel wall, culminating in intima hyperproliferation and atherosclerotic degeneration, which contribute to early graft thrombosis. This review has followed a predetermined strategy for updating information on the human saphenous vein (HSV). Besides presenting the aspects relative to the basic pharmacology, this text also includes surgical aspects concerning HSV harvesting, the possible effects of the major groups of cardiovascular drugs on the HSV, and finally the interference of major cardiovascular diseases in the vascular reactivity of the HSV.
Resumo:
Purpose: Eicosapentaenoic acid has been tested in bladder cancer as a synergistic cytotoxic agent in the form of meglumine-eicosapentaenoic acid, although its mechanism of action is poorly understood in this cancer. The current study analyzed the mechanisms by which eicosapentaenoic acid alters T24/83 human bladder cancer metabolism in vitro. Materials and Methods: T24/83 human bladder cancer cells were exposed to eicosapentaenoic acid for 6 to 24 hours in vitro and incorporation profiles were determined. Effects on membrane phospholipid incorporation, energy metabolism, mitochondrial activity, cell proliferation and apoptosis were analyzed Reactive oxygen species and lipid peroxide production were also determined. Results: Eicosapentaenoic acid was readily incorporated into membrane phospholipids with a considerable amount present in mitochondrial cardiolipin. Energy metabolism was significantly altered by eicosapentaenoic acid, accompanied by decreased mitochondrial membrane potential, and increased lipid peroxide and reactive oxygen species generation. Subsequently caspase-3 activation and apoptosis were detected in eicosapentaenoic acid exposed cells, leading to decreased cell numbers. Conclusions: These findings confirm that eicosapentaenoic acid is a potent cytotoxic agent in bladder cancer cells and provide important insight into the mechanisms by which eicosapentaenoic acid causes these changes. The changes in membrane composition that can occur with eicosapentaenoic acid likely contribute to the enhanced drug cytotoxicity reported previously in meglumine-eicosapentaenoic acid/epirubicin/mitomycin studies. Dietary manipulation of the cardiolipin fatty acid composition may provide an additional method for stimulating cell death in bladder cancer. In vivo studies using intravesical and dietary manipulation of fatty acid metabolism in bladder cancer merit further attention.
Resumo:
Objective: In this study, we determined the protective effect of isoflavones from Glycine max on human umbilical vein endothelial cell (ECV304) damage induced by hydrogen peroxide (H(2)O(2)) and on nitric oxide (NO) production. Methods: We studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in soy extracts in the presence or absence of ICI 182,780 or N(omega)-nitro-L-arginine methyl esther and determined the protective effect of these isoflavones on ECV304 damage induced by H(2)O(2). Results: We show that soy extracts activate NO synthesis in endothelial cells and protect against cell damage. Conclusions: In conclusion, soy isoflavones markedly protect ECV304 cells against H(2)O(2) damage and promote NO synthesizing. Therefore, these isoflavones call potentially act as an NO promoter and as an antioxidant.
Resumo:
Monocrotaline (MCT) is a pyrrolizidine alkaloid found in a variety of plants. The main symptoms of MCT toxicosis in livestock are related to hepato- and nephrotoxicity; in rodents and humans, the induction of a pulmonary hypertensive state that progresses to cor pulmonale has received much attention. Although studies have shown that MCT can cause effects on cellular functions that would be critical to those of lymphocytes/macrophages during a normal immune response, no immunotoxicological study on MCT have yet to ever be performed. Thus, the aim of the present study was to evaluate the effect of MCT on different branches of the immune system using the rat - which is known to be sensitive to the effects of MCT - as the model. Rats were treated once a day by gavage with 0.0, 0.3, 1.0, 3.0, or 5.0 mg MCT/kg for 14 days, and then any effects of the alkaloid on lymphoid organs, acquired immune responses, and macrophage activity were evaluated. No alterations in the relative weight of lymphoid organs were observed; however, diminished bone marrow cellularity in rats treated with the alkaloid was observed. MCT did not affect humoral or cellular immune responses. When macrophages were evaluated, treatments with MCT caused no significant alterations in phagocytic function or in hydrogen peroxide (H(2)O(2)) production; however, the MCT did cause compromised nitric oxide (NO) release by these cells.
Resumo:
In this study, we report the protective effects of IAA on diethylnitrosamine (DEN)-induced hepatocarcinogenesis. BALB/c mice received daily IAA at 50 (T(50)), 250 (T(250)), and 500 (T(500)) mg K(-1) per body mass by gavage for 15 days. At day 15, animals were administered DEN and sacrificed 4 h later. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed in sera. In addition., hepatomorphologic alterations, activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR), gene expression of antioxidant enzymes and DNA integrity were evaluated in the liver. IAA administration did not show any alterations in any of the parameters available, except for a reduction of the gene expression for antioxidant enzyrries by 55, 56, 27, and 28% for SOD, CAT, GPx, and GR upon T(500). respectively compared with the control. Several hepatic alterations were observed by DEN exposure. Moreover, IAA administration at 3 doses was shown to provide a total prevention of the active reduction of CAT and GR induced by DEN exposure compared with the control. IAA at T5(00) was shown to give partial protection (87, 71, 57, and 90% for respectively SOD, CAT. GPx. and GR) on the down-regulation of the enzymes induced by DEN and this auxin showed a partial protection (50%) on DEN-induced DNA fragmentation for both parameters when compared to DEN alone. This work showed IAA hepatocarcinogenesis protection for the first time by means of a DEN-protective effect on CAT and GR activity. and by affecting antioxidant gene expression and DNA fragmentation. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Objective: Prolactin (PRL), a peptide hormone produced by the pituitary gland, is involved in the interaction between the neuroendocrine and immune system. Since dopamine receptor antagonists increase serum levels of PRL, both PRL and dopamine receptors might be involved in the modulation of macrophage activity, providing means of communication between the nervous and immune systems. This study evaluated the effects of PRL and the dopamine antagonist domperidone (DOMP) on macrophage activity of female rats. Methods: Oxidative burst and phagocytosis of peritoneal macrophages were evaluated by flow cytometry. Samples of peritoneal liquid from female rats were first incubated with PRL (10 and 100 nM) for different periods. The same procedure was repeated to evaluate the effects of DOMP (10 and 100 nM). Results: In vitro incubation of macrophages with 10 nM DOMP decreased oxidative burst, after 30 min, whereas the PMA-induced burst was decreased by DOMP 10 nM after 2 and 4 h. Treatment with PRL (10 and 100 nM) for 30 min decreased oxidative burst and rate of phagocytosis (10 nM). After 2 h of incubation, 10 nM PRL decreased oxidative burst and phagocytosis intensity, but increased the rate of phagocytosis. On the other hand, after 4 h, PRL 10 and 100 nM increased oxidative burst and the rate of phagocytosis, but decreased intensity of phagocytosis. Conclusions: These observations suggest that macrophage functions are regulated by an endogenous dopaminergic tone. Our data also suggest that both PRL and dopamine exert their action by acting directly on the peritoneal macrophage. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
This study aimed to test the hypothesis that dentine alterations induced by 810 nm-diode laser may affect the interaction between root canal sealers and the dentin wall. Seventy-two single root human teeth were selected and root canals were enlarged with K-files. Dentine was treated with 0.5% NaOCl and 17% EDTA-T and irradiated (laser group) by diode laser (810 nm/P = 2.5W/I = 1989 W/cm(2)) or remained non-irradiated (control group). Six samples per group were analyzed by scanning electron microscopy (SEM). The remaining samples of each group were divided into three subgroups (n = 10) and sealed with one of the tested sealers (N-Rickert/AHPlus (TM)/Apexit (R)). Apical leakage was estimated by evaluating penetration of 0.5% methylene-blue dye. SEM analysis revealed that dentine at the apical third in irradiated samples was melted and fusioned whereas non-irradiated samples exhibited opened dentinal tubules. Despite the morphological changes induced by irradiation, laser did not affect the sealing ability of N-Rickert and AHPlus (TM) sealers. However, the length of apical leakage in roots filled with Apexit (R) was lower in irradiated root canals than in non-irradiated samples (p < 0.05). Morphological changes of root canal walls promoted by diode laser irradiation may improve de sealing ability of Apexit (R), a calcium hydroxide-based sealer, suggesting that improved sealing promoted by irradiation may represent an additional factor contributing to the endodontic clinical outcome.
Resumo:
Purpose: The aim of this study was to detect the influence of (1) storage period of heparinized blood, (2) type of blood and presence of contaminant, (3) application mode of cleansing agents, and (4) efficacy of cleansing agents on contaminated enamel and dentin during the adhesion process of a one-step adhesive system. Materials and Methods: One hundred four human molars were sectioned into halves along the long axis for enamel and dentin tests. Heparinized and fresh blood were obtained from the same donor, applied and dried to maintain a layer of dry blood on the top of samples. The cleansing agents used were hydrogen peroxide, anionic detergent, and antiseptic solution. A one-step adhesive system (Clearfil S3 Bond) was applied on the dental surface, and composite resin cylinders were built up using Tygon tubing molds. After 24 h, the mu SBS test (1 mm/min) and fracture analysis were performed. Results: There was no statistically significant difference in bond strength values regarding the storage period of heparinized blood and the types of blood. Groups without contamination presented higher bond strengths than contaminated groups. The application mode of the cleansing agents had no influence on bond strength results. There was no statistically significant difference among cleansing agents and they were as effective as a water stream in counteracting the effect of blood contamination. Conclusion: Heparinized blood can be used as a contaminant for up to one week, and it is a reliable procedure to standardize the contaminant. The cleansing agents can be used without friction. A water stream is sufficient to remove blood contamination from dental tissues, before the application of a one-step adhesive system.
Resumo:
Diabetes can interfere in tissue nutrition and can impair dental pulp metabolism. This disease causes oxidative stress in cells and tissues. However, little is known about the antioxidant system in the dental pulp of diabetics. Thus, it would be of importance to study this system in this tissue in order to verify possible alterations indicative of oxidative stress. The aim of this study was to evaluate some parameters of antioxidant system of the dental pulp of healthy (n = 8) and diabetic rats (n = 8). Diabetes was induced by streptozotocin in rats. Six weeks after diabetes induction, a pool of the dental pulp of the 4 incisors of each rat (healthy and diabetic) was used for the determination of total protein and sialic acid concentrations and catalase and peroxidase activities. Data were compared by a Student t test (p <= 0.05). Dental pulps from both groups presented similar total protein concentrations and peroxidase activity. Dental pulps of diabetic rats exhibited significantly lower free, conjugated, and total sialic acid concentrations than those of control tissues. Catalase activity in diabetic dental pulps was significantly enhanced in comparison with that of control pulps. The result of the present study is indicative of oxidative stress in the dental pulp caused by diabetes. The increase of catalase activity and the reduction of sialic acid could be resultant of reactive oxygen species production.
Resumo:
The aim of this in vitro study was to evaluate qualitatively the surface morphology of enamel bleached with 35% hydrogen peroxide (HP) followed by application of fluoridated agents. Forty intact pre molars were randomly distributed into four groups (n = 10), treated as follows: Group I (control group) remained stored in artificial saliva at 37 degrees C, Group II - 35% HP; Group III - 35% HP + acidulated fluoride (1.23%) and Group IV - 35% HP + neutral fluoride (2%). The experimental groups received three applications of bleaching gel and after the last application all specimens were polished. This procedure was repeated after 7 and 14 days, and during the intervals of applications, the specimens were stored in artificial saliva at 37 degrees C. Scanning electron microscopy (SEM) analysis showed superficial irregularities and porosities to varying degrees in bleached enamel compared to control group. Sample evaluation was made by attributing scores, and data were statistically analyzed using Kruskal-Wallis and Dunn tests (P < 0.05). SEM qualitative investigation demonstrated that 35% hydrogen peroxide affected human dental enamel morphology, producing porosities, depressions, and superficial irregularities at various degrees. These morphological changes were higher after the application of 1.23% acidulated fluoride gel. Microsc. Res. Tech. 74:512-516, 2011. (C) 2010 Wiley-Liss, Inc.