982 resultados para Oxford University Press.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of experimental methods have been reported for estimating the number of genes in a genome, or the closely related coding density of a genome, defined as the fraction of base pairs in codons. Recently, DNA sequence data representative of the genome as a whole have become available for several organisms, making the problem of estimating coding density amenable to sequence analytic methods. Estimates of coding density for a single genome vary widely, so that methods with characterized error bounds have become increasingly desirable. We present a method to estimate the protein coding density in a corpus of DNA sequence data, in which a ‘coding statistic’ is calculated for a large number of windows of the sequence under study, and the distribution of the statistic is decomposed into two normal distributions, assumed to be the distributions of the coding statistic in the coding and noncoding fractions of the sequence windows. The accuracy of the method is evaluated using known data and application is made to the yeast chromosome III sequence and to C.elegans cosmid sequences. It can also be applied to fragmentary data, for example a collection of short sequences determined in the course of STS mapping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenoproteins contain the amino acid selenocysteine which is encoded by a UGA Sec codon. Recoding UGA Sec requires a complex mechanism, comprising the cis-acting SECIS RNA hairpin in the 3′UTR of selenoprotein mRNAs, and trans-acting factors. Among these, the SECIS Binding Protein 2 (SBP2) is central to the mechanism. SBP2 has been so far functionally characterized only in rats and humans. In this work, we report the characterization of the Drosophila melanogaster SBP2 (dSBP2). Despite its shorter length, it retained the same selenoprotein synthesis-promoting capabilities as the mammalian counterpart. However, a major difference resides in the SECIS recognition pattern: while human SBP2 (hSBP2) binds the distinct form 1 and 2 SECIS RNAs with similar affinities, dSBP2 exhibits high affinity toward form 2 only. In addition, we report the identification of a K (lysine)-rich domain in all SBP2s, essential for SECIS and 60S ribosomal subunit binding, differing from the well-characterized L7Ae RNA-binding domain. Swapping only five amino acids between dSBP2 and hSBP2 in the K-rich domain conferred reversed SECIS-binding properties to the proteins, thus unveiling an important sequence for form 1 binding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent availability of the chicken genome sequence poses the question of whether there are human protein-coding genes conserved in chicken that are currently not included in the human gene catalog. Here, we show, using comparative gene finding followed by experimental verification of exon pairs by RT–PCR, that the addition to the multi-exonic subset of this catalog could be as little as 0.2%, suggesting that we may be closing in on the human gene set. Our protocol, however, has two shortcomings: (i) the bioinformatic screening of the predicted genes, applied to filter out false positives, cannot handle intronless genes; and (ii) the experimental verification could fail to identify expression at a specific developmental time. This highlights the importance of developing methods that could provide a reliable estimate of the number of these two types of genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selenocysteine (Sec) is co-translationally inserted into selenoproteins in response to codon UGA with the help of the selenocysteine insertion sequence (SECIS) element. The number of selenoproteins in animals varies, with humans having 25 and mice having 24 selenoproteins. To date, however, only one selenoprotein, thioredoxin reductase, has been detected in Caenorhabditis elegans, and this enzyme contains only one Sec. Here, we characterize the selenoproteomes of C.elegans and Caenorhabditis briggsae with three independent algorithms, one searching for pairs of homologous nematode SECIS elements, another searching for Cys- or Sec-containing homologs of potential nematode selenoprotein genes and the third identifying Sec-containing homologs of annotated nematode proteins. These methods suggest that thioredoxin reductase is the only Sec-containing protein in the C.elegans and C.briggsae genomes. In contrast, we identified additional selenoproteins in other nematodes. Assuming that Sec insertion mechanisms are conserved between nematodes and other eukaryotes, the data suggest that nematode selenoproteomes were reduced during evolution, and that in an extreme reduction case Sec insertion systems probably decode only a single UGA codon in C.elegans and C.briggsae genomes. In addition, all detected genes had a rare form of SECIS element containing a guanosine in place of a conserved adenosine present in most other SECIS structures, suggesting that in organisms with small selenoproteomes SECIS elements may change rapidly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria in pregnancy forms a substantial part of the worldwide burden of malaria, with an estimated annual death toll of up to 200,000 infants, as well as increased maternal morbidity and mortality. Studies of genetic susceptibility to malaria have so far focused on infant malaria, with only a few studies investigating the genetic basis of placental malaria, focusing only on a limited number of candidate genes. The aim of this study therefore was to identify novel host genetic factors involved in placental malaria infection. To this end we carried out a nested case-control study on 180 Mozambican pregnant women with placental malaria infection, and 180 controls within an intervention trial of malaria prevention. We genotyped 880 SNPs in a set of 64 functionally related genes involved in glycosylation and innate immunity. A SNP located in the gene FUT9, rs3811070, was significantly associated with placental malaria infection (OR = 2.31, permutation p-value = 0.028). Haplotypic analysis revealed a similarly strong association of a common haplotype of four SNPs including rs3811070. FUT9 codes for a fucosyl-transferase that is catalyzing the last step in the biosynthesis of the Lewis-x antigen, which forms part of the Lewis blood group-related antigens. These results therefore suggest an involvement of this antigen in the pathogenesis of placental malaria infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Removal of introns during pre-mRNA splicing is a critical process in gene expression, and understanding its control at both single-gene and genomic levels is one of the great challenges in Biology. Splicing takes place in a dynamic, large ribonucleoprotein complex known as the spliceosome. Combining Genetics and Biochemistry, Saccharomyces cerevisiae provides insights into its mechanisms, including its regulation by RNA-protein interactions. Recent genome-wide analyses indicate that regulated splicing is broad and biologically relevant even in organisms with a relatively simple intronic structure, such as yeast. Furthermore, the possibility of coordination in splicing regulation at genomic level is becoming clear in this model organism. This should provide a valuable system to approach the complex problem of the role of regulated splicing in genomic expression.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimum experimental designs depend on the design criterion, the model andthe design region. The talk will consider the design of experiments for regressionmodels in which there is a single response with the explanatory variables lying ina simplex. One example is experiments on various compositions of glass such asthose considered by Martin, Bursnall, and Stillman (2001).Because of the highly symmetric nature of the simplex, the class of models thatare of interest, typically Scheff´e polynomials (Scheff´e 1958) are rather differentfrom those of standard regression analysis. The optimum designs are also ratherdifferent, inheriting a high degree of symmetry from the models.In the talk I will hope to discuss a variety of modes for such experiments. ThenI will discuss constrained mixture experiments, when not all the simplex is availablefor experimentation. Other important aspects include mixture experimentswith extra non-mixture factors and the blocking of mixture experiments.Much of the material is in Chapter 16 of Atkinson, Donev, and Tobias (2007).If time and my research allows, I would hope to finish with a few comments ondesign when the responses, rather than the explanatory variables, lie in a simplex.ReferencesAtkinson, A. C., A. N. Donev, and R. D. Tobias (2007). Optimum ExperimentalDesigns, with SAS. Oxford: Oxford University Press.Martin, R. J., M. C. Bursnall, and E. C. Stillman (2001). Further results onoptimal and efficient designs for constrained mixture experiments. In A. C.Atkinson, B. Bogacka, and A. Zhigljavsky (Eds.), Optimal Design 2000,pp. 225–239. Dordrecht: Kluwer.Scheff´e, H. (1958). Experiments with mixtures. Journal of the Royal StatisticalSociety, Ser. B 20, 344–360.1

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α(M)β(2)-mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fibγ(390-396A)) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α(M)β(2) binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α(M)β(2) blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α(M)β(2) interactions may provide a novel strategy for DMD treatment.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: