989 resultados para Orbit
Resumo:
Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper is concerned with a link between central extensions of N = 2 superconformal algebra and a supersymmetric two-component generalization of the Camassa-Holm equation. Deformations of superconformal algebra give rise to two compatible bracket structures. One of the bracket structures is derived from the central extension and admits a momentum operator which agrees with the Sobolev norm of a co-adjoint orbit element. The momentum operator induces, via Lenard relations, a chain of conserved Hamiltonians of the resulting supersymmetric Camassa-Holm hierarchy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A probable capture of Phobos into an interesting resonance was presented in our previous work. With a simple model, considering Mars in a Keplerian and circular orbit, it was shown that once captured in the resonance, the inclination of the satellite reaches very high values. Here, the integrations are extended to much longer times and escape situations are analyzed. These escapes are due to the interaction of new additional resonances, which appear as the inclination starts to increase reaching some specific values. Compared to classical capture in mean motion resonances, we see some interesting differences in this problem. We also include the effect of Mars' eccentricity in the process of the capture. The role played by this eccentricity becomes important, particularly when Phobos encounters a double resonance at a approximate to 2.619R(M). Planetary perturbations acting on Mars and variation of its equator are also included. In general, some possible scenarios of the future of Phobos are presented.
Resumo:
In the present work, we study the stability of hypothetical satellites that are coorbital with Enceladus and Mimas. We performed numerical simulations of 50 particles around the triangular Lagrangian equilibrium points of Enceladus and Mimas taking into account the perturbation of Mimas, Enceladus, Tethys, Dione, Titan and the oblateness of Saturn. All particles remain on tadpole orbits after 10 000 yr of integration. Since in the past the orbit of Enceladus and Mimas expanded due to the tidal perturbation, we also simulated the system with Enceladus and Mimas at several different values of semimajor axes. The results show that in general the particles remain on tadpole orbits. The exceptions occur when Enceladus is at semimajor axes that correspond to 6:7, 5:6 and 4:5 resonances with Mimas. Therefore, if Enceladus and Mimas had satellites librating around their Lagrangian triangular points in the past, they would have been removed if Enceladus crossed one of these first-order resonances with Mimas.
Resumo:
Due to the tides, the orbits of Phobos and Triton are contracting. While their semi major axes are decreasing, several possibilities of secular resonances involving node, argument of the pericenter and mean motion of the Sun will take place. In the case of Mars, if the obliquity (epsilon), during the passage through some resonances, is not so small, very significant variations of the inclination will appear. In one case, capture is almost certain provided that epsilon greater than or equal to 20degrees. For Triton there are also similar situations, but capture seems to be not possible, mainly because in S-1 state, Triton's orbit is sufficiently inclined (far) with respect to the Neptune's equator. Following Chyba et al. (Astron. Astrophys. 219 (1989) 123), a simplified equation that gives the evolution of the inclination versus the semi major axis, is derived. The time needed for Triton crash onto Neptune is longer than that one obtained by these authors, but the main difference is due to the new data used here. In general, even in the case of non-capture passages, some significant jumps in inclination and in eccentricities are possible. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work we study the dynamics of fictitious satellites of the Earth. In the first part we do not consider the effect of the Moon and study the dynamics in the restrict three-body model, i.e., a massless satellite under the effect of the gravitational force of an oblate Earth and that of the Sun. We show that a satellite starting with an almost circular orbit suffers very large variations of eccentricity, depending on the initial inclination of the orbit with respect to the reference plane. As the eccentricity may be driven to very large values (approximate to0.9) mutual collisions between satellites or collisions with the planet may occur. In the second part, we include the gravitational effect of the Moon. In this case, we find two regions with large variations of eccentricity due to the presence of the Moon. Consequently, in both scenarios, we find some large regions of the phase space where the long-term stability of some fictitious Earth's satellites is not possible. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The A (2)Sigma(+) and X(2)Pi electronic states of the SiP species have been investigated theoretically at a very high level of correlation treatment (CASSCF/MRSDCI). Very accurate potential energy curves are presented for both states, as well as the associated spectroscopic constants as derived from the vib-rotational energy levels determined by means of the numerical solution of the radial Schrodinger equation. Electronic transition moment function, oscillator strengths, Einstein coefficients for spontaneous emission, and Franck-Condon factors for the A(2)Sigma(+)-X(2)Pi system have been calculated. Dipole moment functions and radiative lifetimes for both states have also been determined. Spin-orbit coupling constants are also reported. The radiative lifetimes for the A(2)Sigma(+) state, taking into account the spin-orbit diagonal correction to the X(2)Pi state, decrease from a value of 138 ms at v' = 0 to 0.48 ms at v' = 8, and, for the X(2)Pi state, from 2.32 s at v = 1 to 0.59 s at v = 5. Vibrational and rotational transitions are expected to be relatively strong.
Resumo:
In this work, we focus our attention to the expansion of the disturbing function (R) which governs the dynamics of a satellite (natural or artificial) in the Neptune-Triton system. What makes this problem quite unusual, is the fact that a small inner satellite can be strongly disturbed by Triton which is moving in a highly inclined and retrograde orbit. These features are unique in our solar system. Although a lot of retrograde satellites are currently known, all of them have negligible mass and the), do not offer almost any perturbation on the others satellites. However, in the case of the inner satellites of Neptune, Triton is an interesting exception. In a highly inclined orbit, the perturbation it exerts on the neighbouring satellites of Neptune cannot be ignored even for the present scenario. However, in the future, this perturbation will be much more important because due to the tides, the orbit of Triton is contracting, whereas the semi major axes of the remaining inner satellites of Neptune will remain almost unaffected by the tides. In this work we first obtain the disturbing function in the retrograde case. After that, we generalize R for arbitrary inclination. Several numerical tests are presented and a possible future case of resonant configuration is briefly discussed as well. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presented the particle swarm optimization approach for nonlinear system identification and for reducing the oscillatory movement of the nonlinear systems to periodic orbits. We analyzes the non-linear dynamics in an oscillator mechanical and demonstrated that this model has a chaotic behavior. Chaos control problems consist of attempts to stabilize a chaotic system to an equilibrium point, a periodic orbit, or more general, about a given reference trajectory. This approaches is applied in analyzes the nonlinear dynamics in an oscillator mechanical. The simulation results show the identification by particle swarm optimization is very effective.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)