772 resultados para Optimization. Semiarid. Management. Performance Indicators
Resumo:
This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.
Resumo:
The fundamental principle behind the development of SCC has been the nanoscale tailoring of cementitious matrices. Although self-compacting concrete (SCC) is currently used in many countries, there is a fundamental lack of the intrinsic durability of the material itself. The scope of the current paper is to present the outcomes of a research study on some principal indicators (porosity and capillary absorption) that define the durability of SCC, and how these are compared with the corresponding parameters of conventional concrete. Furthermore, this paper investigates the addition of industrial by-products, such as fly-ash or lime powder, to SCC mixtures and their effect on the durability indicators.
Resumo:
The performance of a wetland system in treating lead (Pb)/zinc (Zn) mine drainage was evaluated by using the polyurethane foam unit (PFU) microbial community (method), which has been adopted by China as a standardized procedure for monitoring water quality. The wetland system consisted of four cells with three dominant plants: Typha latifolia, Phragmites australis and Paspalum distichum. Physicochemical characteristics [pH, EC, content of total suspended solid (TSS) and metals (Pb, Zn, Cd, and Cu)] and PFU microbial community in water samples had been investigated from seven sampling sites. The results indicated that the concentrations of Pb, Zn, Cd, Cu, and TSS in the mine drainage were gradually reduced from the inlet to the outlet of the wetland system and 99%, 98%, 75%, 83%, and 68% of these metals and TSS respectively, had been reduced in concentration after the drainage passed through the wetland system. A total of 105 protozoan species were identified, the number of protozoa species and the diversity index (DI) gradually increased, while the heterotrophic index (HI) gradually decreased from the inlet to the outlet of the wetland system. The results indicated that DI, HI, and total number species of protozoa could be used as biological indicators indicating the improvement of water quality.
Resumo:
Performance measurement and management (PMM) is a management and research paradox. On one hand, it provides management with many critical, useful, and needed functions. Yet, there is evidence that it can adversely affect performance. This paper attempts to resolve this paradox by focusing on the issue of "fit". That is, in today's dynamic and turbulent environment, changes in either the business environment or the business strategy can lead to the need for new or revised measures and metrics. Yet, if these measures and metrics are either not revised or incorrectly revised, then we can encounter situations where what the firm wants to achieve (as communicated by its strategy) and what the firm measures and rewards are not synchronised with each other (i.e., there is a lack of "fit"). This situation can adversely affect the ability of the firm to compete. The issue of fit is explored using a three phase Delphi approach. Initially intended to resolve this first paradox, the Delphi study identified another paradox - one in which the researchers found that in a dynamic environment, firms do revise their strategies, yet, often the PMM system is not changed. To resolve this second paradox, the paper proposes a new framework - one that shows that under certain conditions, the observed metrics "lag" is not only explainable but also desirable. The findings suggest a need to recast the accepted relationship between strategy and PMM system and the output included the Performance Alignment Matrix that had utility for managers. © 2013 .
Resumo:
SPIE
Resumo:
TCP performance degrades when end-to-end connections extend over wireless connections-links which are characterized by high bit error rate and intermittent connectivity. Such link characteristics can significantly degrade TCP performance as the TCP sender assumes wireless losses to be congestion losses resulting in unnecessary congestion control actions. Link errors can be reduced by increasing transmission power, code redundancy (FEC) or number of retransmissions (ARQ). But increasing power costs resources, increasing code redundancy reduces available channel bandwidth and increasing persistency increases end-to-end delay. The paper proposes a TCP optimization through proper tuning of power management, FEC and ARQ in wireless environments (WLAN and WWAN). In particular, we conduct analytical and numerical analysis taking into "wireless-aware" TCP) performance under different settings. Our results show that increasing power, redundancy and/or retransmission levels always improves TCP performance by reducing link-layer losses. However, such improvements are often associated with cost and arbitrary improvement cannot be realized without paying a lot in return. It is therefore important to consider some kind of net utility function that should be optimized, thus maximizing throughput at the least possible cost.
Resumo:
The abundance of many commercially important fish stocks are declining and this has led to widespread concern on the performance of traditional approach in fisheries management. Quantitative models are used for obtaining estimates of population abundance and the management advice is based on annual harvest levels (TAC), where only a certain amount of catch is allowed from specific fish stocks. However, these models are data intensive and less useful when stocks have limited historical information. This study examined whether empirical stock indicators can be used to manage fisheries. The relationship between indicators and the underlying stock abundance is not direct and hence can be affected by disturbances that may account for both transient and persistent effects. Methods from Statistical Process Control (SPC) theory such as the Cumulative Sum (CUSUM) control charts are useful in classifying these effects and hence they can be used to trigger management response only when a significant impact occurs to the stock biomass. This thesis explores how empirical indicators along with CUSUM can be used for monitoring, assessment and management of fish stocks. I begin my thesis by exploring various age based catch indicators, to identify those which are potentially useful in tracking the state of fish stocks. The sensitivity and response of these indicators towards changes in Spawning Stock Biomass (SSB) showed that indicators based on age groups that are fully selected to the fishing gear or Large Fish Indicators (LFIs) are most useful and robust across the range of scenarios considered. The Decision-Interval (DI-CUSUM) and Self-Starting (SS-CUSUM) forms are the two types of control charts used in this study. In contrast to the DI-CUSUM, the SS-CUSUM can be initiated without specifying a target reference point (‘control mean’) to detect out-of-control (significant impact) situations. The sensitivity and specificity of SS-CUSUM showed that the performances are robust when LFIs are used. Once an out-of-control situation is detected, the next step is to determine how much shift has occurred in the underlying stock biomass. If an estimate of this shift is available, they can be used to update TAC by incorporation into Harvest Control Rules (HCRs). Various methods from Engineering Process Control (EPC) theory were tested to determine which method can measure the shift size in stock biomass with the highest accuracy. Results showed that methods based on Grubb’s harmonic rule gave reliable shift size estimates. The accuracy of these estimates can be improved by monitoring a combined indicator metric of stock-recruitment and LFI because this may account for impacts independent of fishing. The procedure of integrating both SPC and EPC is known as Statistical Process Adjustment (SPA). A HCR based on SPA was designed for DI-CUSUM and the scheme was successful in bringing out-of-control fish stocks back to its in-control state. The HCR was also tested using SS-CUSUM in the context of data poor fish stocks. Results showed that the scheme will be useful for sustaining the initial in-control state of the fish stock until more observations become available for quantitative assessments.
Resumo:
An enterprise information system (EIS) is an integrated data-applications platform characterized by diverse, heterogeneous, and distributed data sources. For many enterprises, a number of business processes still depend heavily on static rule-based methods and extensive human expertise. Enterprises are faced with the need for optimizing operation scheduling, improving resource utilization, discovering useful knowledge, and making data-driven decisions.
This thesis research is focused on real-time optimization and knowledge discovery that addresses workflow optimization, resource allocation, as well as data-driven predictions of process-execution times, order fulfillment, and enterprise service-level performance. In contrast to prior work on data analytics techniques for enterprise performance optimization, the emphasis here is on realizing scalable and real-time enterprise intelligence based on a combination of heterogeneous system simulation, combinatorial optimization, machine-learning algorithms, and statistical methods.
On-demand digital-print service is a representative enterprise requiring a powerful EIS.We use real-life data from Reischling Press, Inc. (RPI), a digit-print-service provider (PSP), to evaluate our optimization algorithms.
In order to handle the increase in volume and diversity of demands, we first present a high-performance, scalable, and real-time production scheduling algorithm for production automation based on an incremental genetic algorithm (IGA). The objective of this algorithm is to optimize the order dispatching sequence and balance resource utilization. Compared to prior work, this solution is scalable for a high volume of orders and it provides fast scheduling solutions for orders that require complex fulfillment procedures. Experimental results highlight its potential benefit in reducing production inefficiencies and enhancing the productivity of an enterprise.
We next discuss analysis and prediction of different attributes involved in hierarchical components of an enterprise. We start from a study of the fundamental processes related to real-time prediction. Our process-execution time and process status prediction models integrate statistical methods with machine-learning algorithms. In addition to improved prediction accuracy compared to stand-alone machine-learning algorithms, it also performs a probabilistic estimation of the predicted status. An order generally consists of multiple series and parallel processes. We next introduce an order-fulfillment prediction model that combines advantages of multiple classification models by incorporating flexible decision-integration mechanisms. Experimental results show that adopting due dates recommended by the model can significantly reduce enterprise late-delivery ratio. Finally, we investigate service-level attributes that reflect the overall performance of an enterprise. We analyze and decompose time-series data into different components according to their hierarchical periodic nature, perform correlation analysis,
and develop univariate prediction models for each component as well as multivariate models for correlated components. Predictions for the original time series are aggregated from the predictions of its components. In addition to a significant increase in mid-term prediction accuracy, this distributed modeling strategy also improves short-term time-series prediction accuracy.
In summary, this thesis research has led to a set of characterization, optimization, and prediction tools for an EIS to derive insightful knowledge from data and use them as guidance for production management. It is expected to provide solutions for enterprises to increase reconfigurability, accomplish more automated procedures, and obtain data-driven recommendations or effective decisions.
Resumo:
Computational Fluid Dynamics (CFD) is gradually becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However the mathematical modelling of the erratic turbulent motion remains the key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt changes in the turbulent energy and other parameters situated at near wall regions a particularly fine mesh is necessary which inevitably increases the computer storage and run-time requirements. Turbulence modelling can be considered to be one of the three key elements in CFD. Precise mathematical theories have evolved for the other two key elements, grid generation and algorithm development. The principal objective of turbulence modelling is to enhance computational procedures of efficient accuracy to reproduce the main structures of three dimensional fluid flows. The flow within an electronic system can be characterized as being in a transitional state due to the low velocities and relatively small dimensions encountered. This paper presents simulated CFD results for an investigation into the predictive capability of turbulence models when considering both fluid flow and heat transfer phenomena. Also a new two-layer hybrid kε / kl turbulence model for electronic application areas will be presented which holds the advantages of being cheap in terms of the computational mesh required and is also economical with regards to run-time.
Resumo:
The social and economic benefits of the coastal zone make it one of the most treasured environments on our planet. Yet it is vulnerable to increasing anthropogenic pressure and climate change. Coastal management aims to mitigate these pressures while augmenting the socio-economic benefits the coastal region has to offer. However, coastal management is challenged by inadequate sampling of key environmental indicators, partly due to issues relating to cost of data collection. Here, we investigate the use of recreational surfers as platforms to improve sampling coverage of environmental indicators in the coastal zone. We equipped a recreational surfer, based in the south west United Kingdom (UK), with a temperature sensor and Global Positioning System (GPS) device that they used when surfing for a period of one year (85 surfing sessions). The temperature sensor was used to derive estimates of sea-surface temperature (SST), an important environmental indicator, and the GPS device used to provide sample location and to extract information on surfer performance. SST data acquired by the surfer were compared with data from an oceanographic station in the south west UK and with satellite observations. Our results demonstrate: (i) high-quality SST data can be acquired by surfers using low cost sensors; and (ii) GPS data can provide information on surfing performance that may help motivate data collection by surfers. Using recent estimates of the UK surfing population, and frequency of surfer participation, we speculate around 40 million measurements on environmental indicators per year could be acquired at the UK coastline by surfers. This quantity of data is likely to enhance coastal monitoring and aid UK coastal management. Considering surfing is a world-wide sport, our results have global implications and the approach could be expanded to other popular marine recreational activities for coastal monitoring of environmental indicators.