891 resultados para One-Way Function (OWF)
Resumo:
Objective The aim of the present study was to evaluate the effects of nitrous oxide on TOP and pupillary diameter (PD) of dogs anesthetized with varying desflurane concentrations.Animals studied Twenty adult Mongrel dogs were used.Methods They were anesthetized with propofol (10 mg/kg, IV) and maintained with varying concentrations of desflurane (1.6, 1.4, and 1.2 MAC diluted in 100% oxygen (G1) or in 70% nitrous oxide and 30% oxygen (G2) (30 mL/kg/min). TOP was measured by applanation tonometry and horizontal PD was taken with a caliper adjacent to the cornea. Mean arterial pressure (MAP), heart rate (HR), respiratory rate (RR), and end-tidal CO, (etCO(2)) were also measured. All parameters were measured at TO, T30, T45, and T60 time points. One-way repeated measures ANOVA and the t-test were used to assess statistical differences (P < 0.05).Results T30, T45, and T60 TOP measures were Within normal limits for both groups and TOP did not differ between groups at any time. There was a significant decrease in PD in G I between TO and T30, T45 and T60, and also between T30 and T60. PD did not differ between groups. All vital parameters were within normal limits throughout anesthesia.Conclusions Administration of nitrous oxide with desflurane results in maintenance of normal TOP and prevents a decrease in horizontal PD during anesthesia. Therefore, this may be a suitable protocol in dogs undergoing intraocular surgeries that require mydriasis and maintenance of normal TOP.
Resumo:
Data comparing age-related alterations in faecal IgA concentrations of dogs are not available in the literature. The present study aimed to compare the faecal concentrations of IgA in puppies, mature and senior dogs. A total of twenty-four beagle dogs were used, including eight puppies (5 months old, four females and four males), eight mature (4.6 years old, eight males) and eight senior dogs (10.6 years old, three males and five females). Fresh faecal samples were collected from each dog for three consecutive days and pooled by animal. After saline extraction, IgA content was measured by ELISA. Data were analysed by one-way ANOVA, and means were compared with Tukey's test (P<0.05). Results showed that puppies have lower faecal IgA concentrations than mature dogs (P<0.05); senior animals presented intermediary results. The reduced faecal IgA concentration in puppies is consistent with the reduced serum and salivary IgA concentrations reported previously, suggesting a reduced mucosal immunity in this age group. Although some studies have found an increased serum IgA concentration in older dogs, this may differ from the intestinal secretion of IgA, which appears to be lower in some senior animals (four of the eight dogs studied).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tillage stimulates soil carbon (C) losses by increasing aeration, changing temperature and moisture conditions, and thus favoring microbial decomposition. In addition, soil aggregate disruption by tillage exposes once protected organic matter to decomposition. We propose a model to explain carbon dioxide (CO2) emission after tillage as a function of the no-till emission plus a correction due to the tillage disturbance. The model assumes that C in the readily decomposable organic matter follows a first-order reaction kinetics equation as: dC(sail)(t)/dt = -kC(soil)(t) and that soil C-CO2 emission is proportional to the C decay rate in soil, where C-soil(t) is the available labile soil C (g m(-2)) at any time (t). Emissions are modeled in terms soil C available to decomposition in the tilled and non-tilled plots, and a relationship is derived between no-till (F-NT) and tilled (F-Gamma) fluxes, which is: F-T = a1F(NT)e(-a2t), where t is time after tillage. Predicted and observed fluxes showed good agreement based on determination coefficient (R-2), index of agreement and model efficiency, with R-2 as high as 0.97. The two parameters included in the model are related to the difference between the decay constant (k factor) of tilled and no-till plots (a(2)) and also to the amount of labile carbon added to the readily decomposable soil organic matter due to tillage (a,). These two parameters were estimated in the model ranging from 1.27 and 2.60 (a(1)) and - 1.52 x 10(-2) and 2.2 x 10(-2) day(-1) (a(2)). The advantage is that temporal variability of tillage-induced emissions can be described by only one analytical function that includes the no-till emission plus an exponential term modulated by tillage and environmentally dependent parameters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Caffeine is the legal stimulant consumed most extensively by the human world population and may be found eventually in the urine and/or blood of race horses, the fact that caffeine is in foods led us to determine the highest no-effect dose (HNED) of caffeine on the spontaneous locomotor activity of horses and then to quantify this substance in urine until it disappeared. We built two behavioural stalls equipped with juxtaposed photoelectric sensors that emit infrared beams that divide the stall into nine sectors in a 'tic-tac-toe' fashion. Each time a beam was interrupted by a leg of the horse, a pulse was generated; the pulses were counted at 5-min intervals and stored by a microcomputer. Environmental effects were minimized by installing exhaust fans producing white noise that obscured outside sounds. One-way observation windows prevented the animals from seeing outside. The sensors were turned on 45 min before drug administration (saline control or caffeine), the animals were observed for up to 8 h after i.v. administration of 2.0, 2.5, 3.0 or 5.0 mg caffeine kg(-1). The HNED of caffeine for stimulation of the spontaneous locomotor activity of horses was 2.0 mg kg(-1). The quantification of caffeine in urine and plasma samples was done by gradient HPLC with UV detection. The no-effect threshold should not be greater than 2.0 mug caffeine ml(-1) plasma or 5.0 mug caffeine ml(-1) urine. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables
Resumo:
The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The composition of petroleum may change from well to well and its resulting characteristics influence significantly the refine products. Therefore, it is important to characterize the oil in order to know its properties and send it adequately for processing. Since petroleum is a multicomponent mixture, the use of synthetic mixtures that are representative of oil fractions provides a better understand of the real mixture behavior. One way for characterization is usually obtained through correlation of physico-chemical properties of easy measurement, such as density, specific gravity, viscosity, and refractive index. In this work new measurements were obtained for density, specific gravity, viscosity, and refractive index of the following binary mixtures: n-heptane + hexadecane, cyclohexane + hexadecane, and benzene + hexadecane. These measurements were accomplished at low pressure and temperatures in the range 288.15 K to 310.95 K. These data were applied in the development of a new method of oil characterization. Furthermore, a series of measurements of density at high pressure and temperature of the binary mixture cyclohexane + n-hexadecane were performed. The ranges of pressure and temperature were 6.895 to 62.053 MPa and 318.15 to 413.15 K, respectively. Based on these experimental data of compressed liquid mixtures, a thermodynamic modeling was proposed using the Peng-Robinson equation of state (EOS). The EOS was modified with scaling of volume and a relatively reduced number of parameters were employed. The results were satisfactory demonstrating accuracy not only for density data, but also for isobaric thermal expansion and isothermal compressibility coefficients. This thesis aims to contribute in a scientific manner to the technological problem of refining heavy fractions of oil. This problem was treated in two steps, i.e., characterization and search of the processes that can produce streams with economical interest, such as solvent extraction at high pressure and temperature. In order to determine phase equilibrium data in these conditions, conceptual projects of two new experimental apparatus were developed. These devices consist of cells of variable volume together with a analytical static device. Therefore, this thesis contributed with the subject of characterization of hydrocarbons mixtures and with development of equilibrium cells operating at high pressure and temperature. These contributions are focused on the technological problem of refining heavy oil fractions
Resumo:
It has been proposed that the ascending dorsal raphe (DR)-serotonergic (5-HT) pathway facilitates conditioned avoidance responses to potential or distal threat, while the DR-periventricular 5-HT pathway inhibits unconditioned flight reactions to proximal danger. Dysfunction on these pathways would be, respectively, related to generalized anxiety (GAD) and panic disorder (PD). To investigate this hypothesis, we microinjected into the rat DR the benzodiazepine inverse receptor agonist FG 7142, the 5-HT1A receptor agonist 8-OH-DPAT or the GABA(A) receptor agonist muscimol. Animals were evaluated in the elevated T-maze (ETM) and light/dark transition test. These models generate defensive responses that have been related to GAD and PD. Experiments were also conducted in the ETM 14 days after the selective lesion of DR serotonergic neurons by 5,7-dihydroxytriptamine (DHT). In all cases, rats were pre-exposed to one of the open arms of the ETM 1 day before testing. The results showed that FG 7142 facilitated inhibitory avoidance, an anxiogenic effect, while impairing one-way escape, an anxiolytic effect. 8-OH-DPAT, muscimol, and 5,7-DHT-induced lesions acted in the opposite direction, impairing inhibitory avoidance while facilitating one-way escape from the open arm. In the light/dark transition, 8-OH-DPAT and muscimol increased the time spent in the lighted compartment, an anxiolytic effect. The data supports the view that distinct DR-5-HT pathways regulate neural mechanisms underlying GAD and PD. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The elevated T-maze has been developed as an animal model of anxiety to generate both conditioned and unconditioned fears in the same rat. This study explores a version of the elevated T-maze fit for mice. Inhibitory (passive) avoidance-conditioned fear-is measured by recording the latency to leave the enclosed arm during three consecutive trials. One-way escape-unconditioned fear-is measured by recording the time to withdraw from open arms. The results showed that mice do not appear to acquire inhibitory avoidance in the standard T-maze, since their latencies to leave enclosed arm did not increase along trials. Nevertheless, the open arms seemed to be aversive for mice, because the latency to leave the enclosed arm after the first trial was lower in a T-maze with the three enclosed arms than in the standard elevated T-maze, In agreement, the exposure of mice to an elevated T-maze without shield, that reduces the perception of openness, increased significantly the latencies to leave the enclosed arm, However, the absence of the shield also increased the time taken to leave the open arms when compared to that recorded in standard T-maze. Systematic observation of behavioral items in the enclosed arm has shown that risk assessment behavior decreases along trials while freezing increases. In the open arms, freezing did not appear to influence the high latency to leave this compartment, since mice spend only about 8% of their time exhibiting this behavior, These results suggest that mice acquire inhibitory avoidance of the open arms by decreasing and increasing time in risk assessment and freezing, respectively, along three consecutive trials, However, one-way escape could not be characterized. Therefore, there are important differences between mice (present results) and rats (previously reported results) in the performance of behavioral tasks in the elevated T-maze. (C) 1999 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)