952 resultados para Oil pollution of the sea
Resumo:
Bream (Abramis brava orientalis) is one of Cyprindae the Caspian Sea and its basin which has a special ecological, biological and economical role. Stock of this fish in the Caspian Sea has reduced during several years for different reason the over fishing, different industrial, agriculture, urban pollution and destroy of the spawning habitat. So that fishery company decided to recover the stock of this fish by the way of artificial reproduction of a Bream couple hunted from south coast of the Caspian Sea (Iran) and setting the fingerling to the rivers and inflow wetlands of the Caspian Sea.This activity has due to 20 tons Bream annual fishing in the Iranian South coast of the Caspian Sea (Gilan province coast and Anzali wetland), The artificial reproduction has decreased Bream population diversity of Caspian sea and Anzali wetland.So it has been declined to improve Braem population diversity by the entrance of Azerbijan republic Bream and encounter to the Caspian sea Bream. Meanwhile there is Bream in the Aras Dam Lake which had been forgotten by the Fishery Company of Iran .For this reason specifications morphometric, meristic and inter species Molecular Genetic have been surveyed in Anzali wetland,Southern coast of Caspian Sea ,Aras Darn Lake and Azerbijan republic during 2003-2005. According to the research on specifications of Morphometric and Meristic of Anzali wetland(120 species),Southern coast of Caspian Sea(90 species), Aras Dam Lake(110 species) and Azerbijan Republic(125 species)has Morphometric and Meristic differences. So that average weight and total length of Anzali wetland Bream respectively was 167 g and 23/76 cm, 102 g and 27/62 cm in Caspian Sea , 461 g and 3 5/38 cm in Aras Darn Lake and 3 4189 g and 15/21 cm in Azerbijan republic (We forced to use 1 year Bream of artificial reproduction in Iran). Also variation coefficient average Morphometric, Morphometric specification Ration and meristic in Anzali wetland Bream was 17/45, 21/56 and 4/63, in Caspian Sea bream 22/58, 15/27 and 3124, in Aras Dam lake Lake 17145. 1.5/27 and 3/57 and Azerbaijan republic Bream 22/29, 19/66 and 4/22. Also Bream of these four regions in general status had Morphometric significant differences based on One Way ANOVA Analysis. Meanwhile Anzali wetland Bream with Caspian Sea Bream from 41 Morphometric surveyed factors in 33 factors, with Aras Darn Lake Bream in 41 factors, with Azerbkjan republic Bream in 41 factors,Caspian Sea Bream with Aras Darn Lake Bream in 36 factors,with Azerbijan republic B ream in 40 factors and A ras Dam L ake Bream with Azerbijan republic Bream in 38 factors had significant statistical differences. These four regions Bream had differences according to the Morphomertric specification ration based on One Way ANOVA Analysis. Also Anzali wetland Bream was surveyed with Caspian Sea Bream from 37 factors i n 27 factors, Anzali wetland Bream with Aras Dam 1ake in 37 factors Anzali wetland Bream with Azerbijan republic Bream in 32 factors,Caspian sea bream with Arsa Dam Lake Bream in 26 factors, Caspian Sea Bream with Azerbijan republic Bream in 29 factors and Aras Dam Lake Bream with Azerbijan republic Bream in 34 factor had significant statistical differences. Based on Meristic factor of four regions bream in 16 surveyed factors in 10 factors had meaningful differences according to the One Way ANOVA Analysis. While Anzali wetland Bream was surveyed with Caspian Sea Bream from in 3 factors,Anzali wetland Bream with Aras Dam lake in 8 factors,Anzali wetland Bream with Azerbijan republic B ream in 6 factors,Caspian Sea bream with Arsa Dam Lake Bream in 6 factors,Caspian sea Bream with Azerbijan republic Bream in 3 factors and Aras Dam Lake Bream with Azerijan republic Bream in 8 factor had significant statistical differences.Meanwihle based on Factor Analysis and Discriminant Breams had differences. Also according to the resrarchs Anzali wetland Bream in 0+ age group till 5+ (6 age groups),Caspian Sea bream in 1+ - 5+(5 age groups),Aras Darn Lake Bream in 1+ - 7+ (7 age groups) and Azerbijan republic Bream for Morphometric and Meristic studies in 1+age group and for molecular Genetic reaserch were in 8+and 9+ age groups. According to the research 4 ecosystems Bream in status of same age, Aras lake Bream were bigger according to weight and length.Also in this research genetic diversity between four population was researched by PCR-RFLP technic on a piece of mitochondrion genome with the length of 3500bp contain of tRNA-leu,tRNA-glu,ND5/6,Cytb. Between 17 used enzyme. 4 enzyme, Dral, Bc11, Haefll and Banff showed diversity in totally 6 composite haplotype was detected. Maximum nucleotide diversity by the value% 0/58 in Azerbijan republic Bream by all haplotype. Aras darn Lake Bream had 2 haplotype and nucleotide diversity of %0/35.Anzali wetland and Caspian Sea Bream had no diversity. Statistical analysis by the usage of Monte Carlo with 1000 repeat showed significant differences between Azerbaijan Bream and other Bream(P<0/0001) but there was no significant difference between 3 regions Bream(P>0/5).
Resumo:
The Yellowfin tuna was caught more than all other species in the southern waters of Iran (24000 tons in 1998). In order to come up with the responsible fishing pattern, there was a need to identify some of the biological characteristics and population dynamic parameters. This thesis was the first which covered the whole Yellowfin tuna distribution in the Oman Sea, included the fishing grounds of Berris, Ramin, Chabahar, Pozm and Jask. The data during 1998-99 from different fishing grounds were polled. Based on the exponential relationship between length and weight in the size range 38-173 Cm, the relationship (W=aL^ b) was calculated as W=0.000012L ^ 3.0831). The mean fork length,head length,girth and weight were calculated respectively 84.15 Cm, 23 Cm, 53 Cm, and 11828 g. Length infinity was estimated 189 Cm with growth parameters of 0.42 per year. Growth performance index was 4.18 which was in agreement with the findngs of the other studies in the Indian and Pacific Oceans. The mortality parameters and exploitation rate were estimated as below: Z = 1.75-1.85 M=0.6 F=1.25 E=0.68 Occurence of empty stomach was high (60%) in the speciemens obtained from the Oman Sea. Purpleback flying squid (Sthenoteuthis oualaniensis) was the most dominant prey species observed in the study (57% in females and 60% in males), occurrence of teleost fishes were found to be the second (38% in males and 42% in females). Crabs also were identified in the specimens(1-2%). The study on sex ratio indicated that males were predominant at all sizes above 120 Cm fork length. 50.82% of specimens were males and 49.18% females. The monthly gonadosomatic index was deriven higher values during January to June which could be indicated as spawning period.
Resumo:
In the present research, a total of 207 pieces of fish from 25 sampling stations in Gilan Province coasts in the years 2001-2002 were biologically studied in terms of their growth and development, reproduction and feeding. The average length and weight of the fishes are increased, as they get older. The highest index of length and weight growth is observed in the years 1 to 2. As the age increases, gradient of length and weight growth diagrams decrease. In studying the relation between length and weight, it was observed that proportionate to the total length, the weight is increased progressively. The fatness coefficient index in the initial years of life and prior to maturity is higher than the post maturity period. As the age increases, the decrease of this index is observable. The fatness coefficient index rate is directly related to index of fullness. The highest Gonadosomatic Index is seen in the months of June and July, i.e. at the times of spawning; and the lowest index rate is observed in the months of November and December. The appropriate temperature for reproduction of these species is from 18 to 22 degree centigrade. The Gonadosomatic Index is higher in spring and summer seasons as compared with autumn and winter. Besides, as the fishes become aged, the amount of the said index increases in a manner that the gradient of it in the years to maturity is less than the maturity time and thereafter. Sexual maturity stages in different months are directly related to Gonadosomatic index, and increase as the age increases. The sexual ratio of male fishes to the female fishes in terms of number is plus one prior to maturity; about one at the time of maturity and minus after maturity. In general the frequency of male fishes as compared with female fishes in all group ages is approximately two times. The fecundity mean, and the diameter and the rate of eggs will substantially increase, as the Gonadosomatic index rises. The maturity age in the male fishes is 3 to 4 years and in female fishes is 4 to 5 years. The spawning of this species in rivers occurs repeatedly and in different time intervals, and do not take place once (Asyncronous). The Gastrosomatic index is directly related to index of fullness and will decrease, as the age increases. The index of fullness is relatively the months of April and May. The underlying reason is the need of the fishes to energy for reproduction. As the spawning time commences, the index of fullness moves down and the downward direction continues. After spa g mg and reduction of the volume of energy in the body, the index of fullness rises, and it will be substantially high until the beginning of fall. In fall and winter as it gets cold, the index of fullness moves downward and the body fat deposits are used. A correlation is shown between the changes in vacuity index and fullness indices. This means that as the fullness index rises, the vacuity index decreases, and vice versa. The Hepatosomatic index prior to the reproduction is at the highest amount and after spawning is at the lowest. No correlation is observed between the fullness and Hepatosomatic indices. In other words reproduction is an inherent and instinct originated matter; and its cycle goes on, alternately and in an orderly manner, upon completion of germinal cells, even when it coincides with reduction or stoppage of somatic cell growth. The rising trend of Hepatosomatic starts in August and will continue until the next July. The volume of fat around digestive tract is severely reduced in early spring and this trend will reach its apex in summer season. In the cold seasons, i.e. the fall and winter, the accumulation of fat around digestive tract increases. Consequently, a meaningful and inverse relation is observed between index of fullness, also the progress of sexual maturity stages and the volume of fat.
Resumo:
National Natural Science Foundation of China (NSFC) ; [2007CB411600]; [30530120]
Resumo:
The purpose of the research is to study the seasonal succession of protozoa community and the effect of water quality on the protozoa community to characterize biochemical processes occurring at a eutrophic Lake Donghu, a large shallow lake in Wuhan City, China. Samples of protozoa communities were obtained monthly at three stations by PFU (polyurethane foam unit) method over a year. Synchronously, water samples also were taken from the stations for the water chemical quality analysis. Six major variables were examined in a principal component analysis (PCA), which indicate the fast changes of water quality in this station I and less within-year variation and a comparatively stable water quality in stations II and III. The community data were analyzed using multivariate techniques, and we show that clusters are rather mixed and poorly separated, suggesting that the community structure is changing gradually, giving a slight merging of clusters form the summer to the autumn and the autumn to the winter. Canonical correspondence analysis (CCA) was used to infer the relationship between water quality variables and phytoplankton community structure, which changed substantially over the survey period. From the analysis of cluster and CCA, coupled by community pollution value (CPV), it is concluded that the key factors driving the change in protozoa community composition in Lake Donghu was water qualities rather than seasons. (c) 2006 Elsevier Ltd. All rights reserved.