877 resultados para Offshore oil and gas leases
Resumo:
Nowadays, the exploration of fractured reservoir plays a vital role in the further development of petroleum industry through out the world. Fractured hydrocarbon reservoirs are widely distributed in China. Usually, S-wave technique prevails, but it also has its disadvantage, prohibitive expense in S-wave data acquisition and processing. So directly utilizing P-wave data to detect fractures, comes to our mind. We briefly introduce theoretical model (HTI) for fractured reservoir. Then study Ruger’s reflectivity method to recognize reflection P-wave reflection coefficient of the top and bottom interface of HTI layer respectively, and its azimuth anisotropy character. Base on that study, we gives a review and comparison of two seismic exploration technologies for fractures available in the industry-- P-wave AVO and AVA. They has shown great potential for application to the oil and gas prediction of fractured reservoir and the reservoir fine description.Every technique has its disadvantage, AVO limited to small reflection angle; and AVA just offering relatively results. So that, We can draw a conclusion that a better way to any particular field is using synthesis of multiple data sources including core、outcrop、well-test、image logs、3D VSPs, generally to improve the accuracy.
Resumo:
On the subject of oil and gas exploration, migration is an efficacious technique for imagining structures underground. Wave-equation migration (WEM) dominates over other migration methods in accuracy, despite of higher computational cost. However, the advantages of WEM will emerge as the progress of computer technology. WEM is sensitive to velocity model more than others. Small velocity perturbations result in grate divergence in the image pad. Currently, Kirrchhoff method is still very popular in the exploration industry for the reason of difficult to provide precise velocity model. It is very urgent to figure out a way to migration velocity modeling. This dissertation is mainly devoted to migration velocity analysis method for WEM: 1. In this dissertation, we cataloged wave equation prestack depth migration. The concept of migration is introduced. Then, the analysis is applied to different kinds of extrapolate operator to demonstrate their accuracy and applicability. We derived the DSR and SSR migration method and apply both to 2D model. 2. The output of prestack WEM is in form of common image gathers (CIGs). Angle domain common image gathers (ADCIGs) gained by wave equation are proved to be free of artifacts. They are also the most potential candidates for migration velocity analysis. We discussed how to get ADCIGs by DSR and SSR, and obtained ADCIGs before and after imaging separately. The quality of post stack image is affected by CIGs, only the focused or flattened CIGs generate the correct image. Based on wave equation migration, image could be enhanced by special measures. In this dissertation we use both prestack depth residual migration and time shift imaging condition to improve the image quality. 3. Inaccurate velocities lead to errors of imaging depth and curvature of coherent events in CIGs. The ultimate goal of migration velocity analysis (MVA) is to focus scattered event to correct depth and flatten curving event by updating velocities. The kinematic figures are implicitly presented by focus depth aberration and kinetic figure by amplitude. The initial model of Wave-equation migration velocity analysis (WEMVA) is the output of RMO velocity analysis. For integrity of MVA, we review RMO method in this dissertation. The dissertation discusses the general ideal of RMO velocity analysis for flat and dipping events and the corresponding velocity update formula. Migration velocity analysis is a very time consuming work. Respect to computational convenience, we discus how RMO works for synthetic source record migration. In some extremely situation, RMO method fails. Especially in the areas of poorly illuminated or steep structure, it is very difficult to obtain enough angle information for RMO. WEMVA based on wave extrapolate theory, which successfully overcome the drawback of ray based methods. WEMVA inverses residual velocities with residual images. Based on migration regression, we studied the linearized scattering operator and linearized residual image. The key to WEMVA is the linearized residual image. Residual image obtained by Prestack residual migration, which based on DSR is very inefficient. In this dissertation, we proposed obtaining residual migration by time shift image condition, so that, WEMVA could be implemented by SSR. It evidently reduce the computational cost for this method.
Resumo:
Fractured oil and gas reservoir is an important type of oil and gas reservoir, which is taking a growing part of current oil and gas production in the whole world. Thus these technologies targeted at exploration of fractured oil and gas reservoirs are drawing vast attentions. It is difficult to accurately predict the fracture development orientation and intensity in oil and gas exploration. Focused on this problem, this paper systematically conducted series study of seismic data processing and P-wave attributes fracture detection based on the structure of ZX buried mountain, and obtained good results. This paper firstly stimulated the propagation of P-wave in weak anisotropic media caused by vertical aligned cracks, and analyzed the rule of P-wave attributes’ variation associated with observed azimuth, such as travel-time, amplitude and AVO gradient and so on, and quantitatively described the sensitive degree of these attributes to anisotropy of fracture medium. In order to further study the sensitive degree of these attributes to anisotropy of fractures, meanwhile, this paper stimulated P-wave propagation through different types and different intensity anisotropic medium respectively and summarized the rule of these attributes’ variation associated with observed azimuth in different anisotropic medium. The results of these studies provided reliable references for predicting orientation, extensity and size of actual complicated cracked medium by P-wave azimuth attributes responses. In the paper, amounts of seismic data processing methods are used to keep and recover all kinds of attributes applied for fracture detection, which guarantee the high accurate of these attributes, thus then improve the accurate of fracture detection. During seismic data processing, the paper adopted the three dimensional F-Kx-Ky field cone filter technique to attenuate ground roll waves and multiple waves, then enhances the S/N ratio of pre-stack seismic data; comprehensively applying geometrical spread compensation, surface consistent amplitude compensation, residual amplitude compensation to recover amplitude; common azimuth processing method effectively preserves the azimuthal characteristics of P-wave attributes; the technique of bend ray adaptive aperture pre-stack time migration insures to obtain the best image in each azimuth. Application of these processing methods guaranteed these attributes’ accuracy, and then improved the accuracy of fracture detection. After comparing and analyzing a variety of attributes, relative wave impedance (relative amplitude) attribute is selected to inverse the orientation of fracture medium; attenuation gradient and corresponding frequency of 85% energy are selected to inverse the intensity of fracture medium; then obtained the fracture distribution characteristics of lower Paleozoic and Precambrian in ZX ancient buried mountains. The results are good accord with the characteristics of faults system and well information in this area.
Resumo:
Seismic exploration is the main method of seeking oil and gas. With the development of seismic exploration, the target becomes more and more complex, which leads to a higher demand for the accuracy and efficiency in seismic exploration. Fourier finite-difference (FFD) method is one of the most valuable methods in complex structure exploration, which has obtained good effect. However, in complex media with wider angles, the effect of FFD method is not satisfactory. Based on the FFD operator, we extend the two coefficients to be optimized to four coefficients, then optimize them globally using simulated annealing algorithm. Our optimization method select the solution of one-way wave equation as the objective function. Except the velocity contrast, we consider the effects of both frequency and depth interval. The proposed method can improve the angle of FFD method without additional computation time, which can reach 75° in complex media with large lateral velocity contrasts and wider propagation angles. In this thesis, combinating the FFD method and alternative-direction-implicit plus interpolation(ADIPI) method, we obtain 3D FFD with higher accuracy. On the premise of keeping the efficiency of the FFD method, this method not only removes the azimuthal anisotropy but also optimizes the FFD mehod, which is helpful to 3D seismic exploration. We use the multi-parameter global optimization method to optimize the high order term of FFD method. Using lower-order equation to obtain the approximation effect of higher-order equation, not only decreases the computational cost result from higher-order term, but also obviously improves the accuracy of FFD method. We compare the FFD, SAFFD(multi-parameter simulated annealing globally optimized FFD), PFFD, phase-shift method(PS), globally optimized FFD (GOFFD), and higher-order term optimized FFD method. The theoretical analyses and the impulse responses demonstrate that higher-order term optimized FFD method significantly extends the accurate propagation angle of the FFD method, which is useful to complex media with wider propagation angles.
Resumo:
The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.
Resumo:
Based on the temperature data from 196 wells and thermal conductivity measurements of 90 rock samples, altogether 35 heat flow data are obtained. The results show that the Junggar basin is a relatively "cold basin" at present. The thermal gradients vary between 11.6 and 26.5 ℃/km, and the thermal conductivity change from 0.17 to 3.6 W/mK. Heat flow ranges from 23.4 to 53.7 mW/m~2 with a mean of 42.3 ± 7.7 mW/m~2. The heat flow pattern shows that heat flow is higher on the uplifts and lower on the depressions. The overall low present-day heat flow in the Junggar Basin reflects its stable cratonic basement and Cenozoic tectonothermal evolution characterized by lithospheric thickening, thrust and fault at shallow crust as well as consequently quick subsidence during the Late Cenozoic. The study of the basin thermal history, which is one of the important content of the basin analysis, reveals not only the process of the basin's tectonothermal evolution, but also the thermal evolution of the source rocks based on the hydrocarbon generation models. The latter is very helpful for petroleum exploration. The thermal history of the Junggar basin has been reconstructed through the heat flow based method using the VR and Fission track data. The thermal evolutions of main source rocks (Permian and Jurassic) and the formations of the Permian and the Jurassic petroleum systems as well as the influences of thermal fields to petroleum system also have been discussed in this paper. Thermal history reconstruction derived from vitrinite reflectance data indicates that the Paleozoic formations experienced their maximum paleotemperature during Permian to Triassic with the higher paleoheat flow of around 70-85 mW/m~2 and the basin cooled down to the present low heat flow. The thermal evolution put a quite important effect on the formation and evolution of the petroleum system. The Jurassic petroleum system in the Junggar basin is quite limited in space and the source rocks of Middle-Lower Jurassic entered oli-window only along the foreland region of the North Tianshan belt, where the Jurassic is buried to the depth of 5-7 km. By contrast, the Middle-Lower Permian source rocks have initiated oil and gas generation in latter Permian to Triassic, and the major petroleum systems, like Mahu-West Pen 1 Well, was formed prior to Triassic when later Paleozoic formation reached the maximum paleotemperature.
Resumo:
According to the basic geologic conditions, the paper is directed by the modem oil-gas accumulation theory and petroleum system in which typical oil pools are analyzed and the shape of lithologic trap and geologic factors are pointed out. The process during which oil and gas migrate from source rock to lithologic trap is rebuilt, and the accumulation model of oil pool is set up. With the comprehensive application of seismic geologic and log data and paying attention to the method and technology which is used to distinguish lithologic accumulation. Promising structural-lithofacies zones are got and the distribution rule of various lithologic accumulation is concluded. With making use of the biologic mark compound, different reservoirs are compared. As a result, the oil and gas in HeiDimiao come from Nenjiang Group's source rocks; in SaErTu from QingShenkou Group's and Nenjiang Group's, and in PuTaohua. GaoTaizi and FuYang from QingShankou Group's. According to the development and distribution of effective source rock, oil distribution and the comparison in the south of SongLiao basin, the characteristic of basin structure and reservoir distribution is considered, and then the middle-upper reservoir of SongLiao basin south are divided into two petroleum system and a complex petroleum system. Because of the characteristic of migration and accumulation, two petroleum systems can furtherly be divided into 6-7 sub-petroleum systems,20 sub-petroleum systems in all. As a result of the difference of the migration characteristic, accumulation conditions and the place in the petroleum system, the accumulation degree and accumulation model are different. So three accumulation mechanism and six basic accumulation model of lithologic trap are concluded. The distribution of lithologic pools is highly regular oil and gas around the generation sag distribute on favorable structural-lithofacies zones, the type of lithological pool vary regularly from the core of sandstone block to the upper zone. On the basic of regional structure and sedimentary evolution, main factors which control the form of trap are discovered, and it is the critical factor method which is used to discern the lithologic trap. After lots of exploration, 700km~2 potential trap is distinguished and 18391.86 * 10~4 tons geologic reserves is calculated. Oil-water distribution rule of pinch-out oil pool is put up on plane which is the reservoirs can be divided into four sections. This paper presented the law of distribution of oil and water in updip pinch-out reservoir, that is, hydrocarbon-bearing formation in plane can be divided into four zones: bottom edge water zone, underside oil and water zone, middle pure oil zone and above residual water zone. The site of the first well should be assigned to be middle or above pure oil zone, thus the exploration value of this type of reservoir can be recognized correctly. In accordance with the characteristics of seism and geology of low permeability thin sandstone and mudstone alternation layer, the paper applied a set of reservoir prediction technology, that is: (1)seism multi-parameter model identification; (2) using stratum's absorbing and depleting information to predict reservoir's abnormal hydrocarbon-bearing range. With the analysis of the residual resource potential and the research of two petroleum system and the accumulation model, promising objective zones are predicted scientifically. And main exploration aim is the DaRngZi bore in the west of ChangLin basin, and YingTai-SiFangZi middle-upper assembly in Honggang terrace.
Resumo:
As an important measure to understand oil and gas accumulation during petroleum exploration and development, Petroleum geological model is an integrated system of theories and methods, which includes sedimentology, reservoir geology, structural geology, petroleum geology and other geological theories, and is used to describe or predict the distribution of oil and gas. Progressive exploration and development for oil and gas is commonly used in terrestrial sedimentary basin in China for the oil and gas generation, accumulation and exploitation are very intricate. It is necessary to establish petroleum geological model, adaptive to different periods of progressive exploration and development practice. Meanwhile there is lack of an integrated system of theories and methods of petroleum geological model suitable for different exploration and development stages for oil and gas, because the current different models are intercrossed, which emphasize their different aspects. According to the characteristics of exploration and development for the Triassic oil and gas pool in Lunnan area, Tarim Basin, the Lunnan horst belt was selected as the major study object of this paper. On the basis of the study of petroleum geological model system, the petroleum geological models for different exploration and development stages are established, which could be applied to predict the distribution of oil and gas distribution. The main results are as follows. (1) The generation-accumulation and exploration-development of hydrocarbon are taken as an integrated system during the course of time, so petroleum exploration and development are closely combined. Under the guidance of some philosophical views that the whole world could be understood, the present writer realizes that any one kind of petroleum geological models can be used to predict and guide petroleum exploration and development practice. The writer do not recognize that any one kind of petroleum geological models can be viewed as sole model for guiding the petroleum exploration and development in the world. Based on the differences of extents and details of research work during various stage of exploration and development for oil and gas, the system of classification for petroleum geological models is established, which can be regarded as theoretical basis for progressive petroleum exploration and development. (2) A petroleum geological model was established based on detailed researches on the Triassic stratigraphy, structure, sedimentology and reservoir rocks in the Lunnan area, northern Tarim Basin. Some sub-belt of hydrocarbon accumulation in the Lunnan area are divided and the predominate controlling factors for oil and gas distribution in the Lunnan area are given out. (3) Geological models for Lunnan and Jiefangqudong oil fields were rebuilt by the combinations of seismology and geology, exploration and development, dynamic and static behavior, thus finding out the distribution of potential zones for oil and gas accumulations. Meanwhile Oil and gas accumulations were considered as the important unit in progressive exploration and development, and the classification was made for Lunnan Triassic pools. Petroleum geological model was created through 3D seismic fine interpretation and detailed description of characteristics of reservoir rocks and the distribution of oil and gas, especially for LN3 and LN26 well zones. The possible distribution of Triassic oil traps and their efficiency in the Lunnan area has been forecasted, and quantitative analysis for original oil(water) saturation in oil pools was performed. (4) The concept of oil cell is proposed by the writer for the first time. It represents the relatively oil-rich zones in oil pool, which were formed by the differences of fluid flows during the middle stage of reservoir development. The classification of oil cells is also given out in this paper. After the studies of physical and numerical modeling, the dominant controlling factors for the formation of various oil cells are analyzed. Oil cells are considered as the most important hydrocarbon potential zones after first recovery, which are main object of progressive development adjustment and improvement oil recovery. An example as main target of analysis was made for various oil cells of Triassic reservoir in the LN2 well area. (5) It is important and necessary that the classification of flow unit and the establishment of geological model of flow unit based on analysis of forecast for inter-well reservoir parameters connected with the statistical analysis of reservoir character of horizontal wells. With the help of self-adaptive interpolation and stochastic simulation, the geological model of flow units was built on the basis of division and correlation of flow units, with which the residual oil distribution in TIII reservoir in the LN2 well area after water flooding can be established.
Resumo:
As an important part of petroleum exploration areas in the west of China, the north part of Qaidam basin is very promising in making great progress for petroleum discovery. But there are still many obstacles to overcome in understanding the process of petroleum formation and evaluation of oil & gas potential because of the complexity of geological evolution in the study area. Based upon the petroleum system theory, the process of petroleum formation is analyzed and the potential of oil & gas is evaluated in different petroleum systems by means of the modeling approach. The geological background for the formation of petroleum systems and the consisting elements of petroleum systems are described in detail. The thickness of strata eroded is estimated by means of vitrinite reflectance modeling, compaction parameter calculating and thickness extrapolating. The buried histories are reconstructed using the transient compaction model, which combines of forward and reverse modeling. The geo-history evolution consists of four stages - sedimentation in different rates with different areas and slow subsidence during Jurassic, uplifting and erosion during Cretaceous, fast subsidence during the early and middle periods of Tertiary, subsidence and uplifting in alternation during the late period of Tertiary and Quaternary. The thermal gradients in the study area are from 2.0 ℃/100m to 2.6 ℃/100m, and the average of heat flow is 50.6 mW/m~2. From the vitrinite reflectance and apatite fission track data, a new approach based up Adaptive Genetic Algorithms for thermal history reconstruction is presented and used to estimate the plaeo-heat flow. The results of modeling show that the heat flow decreased and the basin got cooler from Jurassic to now. Oil generation from kerogens, gas generation from kerogens and gas cracked from oil are modeled by kinetic models. The kinetic parameters are calculated from the data obtained from laboratory experiments. The evolution of source rock maturation is modeled by means of Easy %Ro method. With the reconstruction of geo-histories and thermal histories and hydrocarbon generation, the oil and gas generation intensities for lower and middle Jurassic source rocks in different time are calculated. The results suggest that the source rocks got into maturation during the time of Xiaganchaigou sedimentation. The oil & gas generation centers for lower Jurassic source rocks locate in Yikeyawuru sag, Kunteyi sag and Eboliang area. The centers of generation for middle Jurassic source rocks locate in Saishenteng faulted sag and Yuka faulted sag. With the evidence of bio-markers and isotopes of carbonates, the oil or gas in Lenghusihao, Lenghuwuhao, Nanbaxian and Mahai oilfields is from lower Jurassic source rocks, and the oil or gas in Yuka is from middle Jurassic source rocks. Based up the results of the modeling, the distribution of source rocks and occurrence of oil and gas, there should be two petroleum systems in the study area. The key moments for these two petroleum, J_1-R(!) and J_2-J_3, are at the stages of Xiaganchaigou-Shangyoushashan sedimentation and Xiayoushashan-Shizigou sedimentation. With the kinetic midels for oil generated from kerogen, gas generated from kerogen and oil cracked to gas, the amount of oil and gas generated at different time in the two petroleum systems is calculated. The cumulative amount of oil generated from kerogen, gas generated from kerogen and gas cracked from oil is 409.78 * 10~8t, 360518.40 * 10~8m~3, and 186.50 * 10~8t in J_1-R(!). The amount of oil and gas generated for accumulation is 223.28 * 10~8t and 606692.99 * 10~8m~3 in J_1-R(!). The cumulative amount of oil generated from kerogen, gas generated from kerogen and gas cracked from oil is 29.05 * 10~8t, 23025.29 * 10~8m~3 and 14.42 * 10~8t in J_2-J_3 (!). The amount of oil and gas generated for accumulation is 14.63 * 10~8t and 42055.44 * 10~8m~3 in J_2-J_3 (!). The total oil and gas potential is 9.52 * 10~8t and 1946.25 * 10~8m~3.
Resumo:
The petroleum migration, happening in the geologic past, is the very important and complex dynamic processes in the petroleum systems. It plays a linking role among all static factors in a system. The accumulation is in fact the result of the petroleum migration. For the petroleum geology, the dynamics research of the petroleum migration refers to the mechanism and process research, as well as the use of the quantitative methods. In this thesis, combining with the qualitative analysis and quantitative modeling, the author manages to discuss theoretically some key problems dealing with migration processes, which have not been solved yet, and to apply the studied results in petroleum system analysis in actual basins. The basin analysis offers the base of the numerical modeling for geological phenomena occurring in sedimentary basins, that consists of the sedimentary facies analysis, the section reconstructing technique, eroded thickness estimating, etc. The methods to construct the geologic model, which is needed in the research of oil and gas migration and accumulation, are discussed. The basin analysis offers also the possibility for the latter modeling works to get and select the parameters, such as stratum's thickness, age, stratigraphy etc. Modeling works were done by using two basin modeling softwares: Basin_Mod and TPC_Mod. The role of compaction during the secondary migration and the heterogeneity of migrating paths within the clastic carrier are modeled. And the conclusions were applied in the migration studies in the Jungaer Basin, lying on the Northwest part of the China. To construct a reliable migration model, the author studied the characteristics of the sedimentation, the pore fluid pressure evolution, as well as the distribution and the evolution of fluid potential, following the tectonic evolution of the Jungaer Basin. The geochemical prospecting results were used to evidence and to calibrate the migration processes: the oil-source correlation, the distribution of the properties of oil, gas and water. Finally, two important petroleum systems, Permian one and Jurassic one were studied and identified, according, principally, to the studies on the petroleum migration within the Jungaer Basin. Since the oil, as well as the gas, moves mainly in separate phase during the secondary migration, their migrating behaviors would be determined by the dynamics conditions of migration, including the driving forces and pathways. Based on such a consideration, the further understandings may be acquired: the roles played by permeable carriers and low-permeable source rock would be very different in compaction, overpressure generation, petroleum migration, and so on. With the numerical method, the effect of the compaction on the secondary migration was analyzed and the results show that the pressure gradient and the flux resulted from compaction are so small that could be neglected by comparing to the buoyancy of oil. The main secondary migration driving forces are therefore buoyancy and capillary within a hydrostatic system. Modeling with the commercial software-Basin_Mod, the migration pathways of petroleum in clastic carriers seem to be inhomogeneous, controlled by heterogeneity of the driving force, which in turn resulted from the topography of seals, the fabrics and the capillary pressure of the clastic carriers. Furthermore, the direct and indirect methods to study fault-sealing properties in the course of migration were systemically summarized. They may be characterized directly by lithological juxtaposition, clay smear and diagenesis, and indirectly the comparing the pressures and fluid properties in the walls at two apartments of a fault. In Jungaer Basin, the abnormal pressures are found in the formations beneath Badaowan or Baijantan Formation. The occurrence of the overpressure seems controlled by the stratigraphy. The rapid sedimentation, tectonic pressuring, clay sealing, chemical diagensis were considered as the principal pressuring mechanisms. The evolution of fluid pressure is influenced differently at different parts of the basin by the tectonic stresses. So the basin appears different pressure evolution cycles from each part to another during the geological history. By coupling the results of thermal evolution, pressure evolution and organic matter maturation, the area and the period of primary migration were acquired and used to determine the secondary migration time and range. The primary migration in Fengcheng Formation happened from latter Triassic to early Jurassic in the main depressions. The main period of lower-Wuerhe Formation was at latter Jurassic in Changji, Shawan and Pen-1-jing-xi Depression, and at the end of early Cretaceous in Mahu Depression. The primary migration in Badaowan and Sangonghe Formation is at the end of early-Cretaceous in Changji Depression. After then, the fluid potential of oil is calculated at the key time determined from area and time of the primary migration. Generally, fluid potential of oil is high in the depressions and low at the uplifts. Synthetically, it is recognized that the petroleum migration in the Jungaer Basin is very complex, that leads us to classify the evolution of petroleum systems in Northwestern China as a primary stage and a reformed one. The remigration of accumulated petroleum, caused by the reformation of the basin, results in the generation of multiple petroleum systems. The faults and unconformities are usually the linkers among the original petroleum systems. The Permian petroleum system in Jungaer Basin is such a multiple petroleum system. However, the Jurassic petroleum system stays still in its primary stage, thought the strong influences of the new tectonic activities.
Resumo:
As a kind of special lithologic ones, Igneous rock oil and gas pool is more and more paid attention, and it has different forming condition and distribution from conventional ones, such as various terrane distribution types, serious reservoir anisotropy, complicated hydrocarbon-bearing, so there is not successful experience to follow for exploration and development of this complex subtle oil and gas pool at present. For an example of Igneous oil and gas pool of Luo151 area in Zhanhua seg, Eastern China, this article study the difficult problem, including petrologic nd lithofacies analysis, Origin, invasion age and times of Igneous rock, reservoir anisotropy, Geological Modeling, Igneous reservoir synthesis evaluation. forming condition and distribution are studied synthetically, and an integrated method to predict igneous rock oil and gas pool is formed, which is evaluated by using development data. The Igneous rock is mainly diabase construction in Luo151 area of Zhanhua Sag, and petrologic types include carbonaceous slate, hornfels, and diabases. Based on analyzing synthetically petrologic component, texture and construct, 4 lithofacies zones, such as carbonaceous slate subfacies, hornfels subfacies containing cordierite and grammite, border subfacies and central subfacies, are divided in the diabase and wall rock. By studying on isotopic chronology, terrane configuration and imaging logging data, the diabase intrusion in Zhanhua Sag is formed by tholeiite magma emplacing in Shahejie formation stratum on the rift tension background Lower Tertiary in North China. The diabase intrusion of Luo151 is composed possibly of three periods magma emplacement. There is serious anisotropy in the diabase reservoirs of Luo151 in Zhanhua Sag. Fracture is primary reservoir space, which dominated by tensile fracture in high obliquity, and the fracture zones are mainly developed round joint belt of igneous rock and wall rock and position of terrane thickness changing rapidly. The generation materials of the reservoirs in Luo151 igneous oil pools consist of Intergranular micropore hornfels, condensate blowhole-solution void diabase condensate edge, the edge and center of the condensate seam diabase, of which are divided into horizontal, vertical and reticulated cracks according fracture occurrence. Based on the above research, a conceptual model of igneous rock reservoir is generated, which is vertically divided into 4 belts and horizontally 3 areas. It is built for the first time that classification evaluation pattern of igneous rock reservoir in this area, and 3 key wells are evaluated. The diabase construction is divided into grammite hornfels micropore type and diabase porous-fracture type reservoirs. The heavy mudstone layers in Third Member of Shahejie formation (Es3) provide favorable hydrocarbon source rock and cap formation, diabase and hornfels belts serve as reservoirs, faults and microcracks in the wall rocks as type pathways for oil and gas migration. The time of diabase invasion was about in the later deposition period of Dongying Formation and the middle of that of Guantao Formation, the oil generated from oil source rock of Es3 in the period of the Minghuazhen formation and is earlier more than the period of diabase oil trap and porous space forming. Based on geological and seismic data, the horizon of igneous rocks is demarcated accurately by using VSP and synthetic seismogram, and the shape distribution and continuity of igneous rocks are determined by using cross-hole seismic technology. The reservoir capability is predicted by using logging constraining inversion and neural network technology. An integrated method to predict igneous rock oil and gas pool is formed. The study is appraised by using development data. The result show the reservoir conceptual model can guide the exploration and development of oil pool, and the integrated method yielded marked results in the production.
Resumo:
Lukeqin arc belt is a compound structure generated by multi-movements and composed of 6 sub-structural zones, which are connected by Huoyanshan Mountain. General characteristics of the arc belt are multi-patterns of structure, multi-phases for petroleum, multi-types of trap and multi-layers for reservoirs. As a part of the eastern Lukeqin arc belt located on the south of Taibei depression, Lukeqin structural zone behaves as a complex faulted-fold zone, in which the formation and distribution of hydrocarbons are controlled by structures. As the dominant source of dynamics for the second migration of hydrocarbon, structure stress field is closely related with the potentials of hydrodynamics. Results derived from the simulations of stress field by finite element method indicate that the northwest tending faults prefer seal to the northeast tending ones. The reason is that the northwest tending faults were squeezed more strongly than the northeast tending ones. Therefor, the northeast tending faults become always the paths for oil to migrate southeastward. Lukeqin structural zone is the main site for oil to concentration because it is surrounded by high stress. Situated on the front of the foreland basin of Turpan-Hami, Lukeqing arc belt is a dam to hold back the southward migrating oil from Shengbei depression. The axis line of Shenquan-Shengnan-Yanmuxi, Lukeqin and Yubei controls the migrating paths and concentrating process of oil and gas. Results derived from stress simulation and structure analyses indicate consistently that both Yubei and Lukeqin structural zones are the favorite areas for oil to migrate. The generally southward paths for oil to migrate out of Taibei depression can be two ways. One of them is from Taibei depression to Yubei structural zone and the other is from Taibei depression to Lukeqin structural zone. By the both ways, oil migrated upward along the faults and southeastward along the structural axis to concentrate in either Permian or Triassic system. The newly ascertained path for oil migration, which is accurately southeastward instead of coarsely southward, indicates the directions for further explorations on the compound Lukeqin block zone. Five kinds of seal models of fault are all found in Lukeqin block zone by studying the seal features of faults occurred in the zone. Having studied the fault seal and their controlling factors by fuzzy set method, the paper deems that the northwest tended faults are better than the northeast tended ones for oil to concentrate. The most important factors to decide the seal extent of faults in this zone are the characteristics of main stress and fluids instead of capillary pressure differences between the two sides of fault and smear mud factors. There exist seal differences not only between the faults of different time but also between the sections within a fault due to the variation of depths, strata and positions. The general distribution rules of reservoirs were dominated by the seal characteristics of a fault during the time reservoirs formed. While the current features of fault seal decide the conservation of reservoirs and heights of oil accumulations. Seal or not of a fault is not absolute because the essential for fault to seal is the distribution of permeability of fault zone. Therefor, the multi cyclical activities of faults create the space-time variation of seal features of the fault. Totally, the seal extent of the faults within the area is not as perfect as to accumulate ordinary crude. Crude oil can only be sealed when it becomes viscous. Process for crude oil to become viscous and viscous happened strongly because of the fault-fold movements. Shallowly burying and even revealing of the objective layers of the reservoirs made the crude oil to be thickened by water washing biologically degradation and oxidation degradation. The northwestward deepening during or after the reservoir formation of the structural zone provided the power for oil to migrate one or more times. The main reason for oil accumulation is the formation of Lukeqin block zone during Xishanyao stage, middle Jurassic Period, Early Yanshanian Movement. While the main reason for reservoir conservation is the placidity of Triassic blocks after the formation of reservoirs. Contrasting to former opinions, it is concluded that the reservoirs in Lukeqin zone, including viscous reservoirs, were formed by one time but not more times. So the author proposes the opinion that the reservoirs of viscous oil were formed by viscous oil migration under the conditions of aptitude sets of fault seals controlled by fluid and other factors. To grope the distribution rules outside Taibei depression and discuss the formation mechanism of Anjurassic reservoirs, it is necessary to study the dominate factors for the formation of reservoirs in Lukeqin structural zone such as structural stress, fault seals and thickening mechanism of crude oil. Also, the necessary studies are the key to break through the Taibei depression and Anjurassic systems. Therefor, they are significant for the future exploration and reserve increasing of hydrocarbon within the Turpan-Hami basin. The paper studied the distribution rules of block reservoirs and forecasted the favorable zones for further exploration in Turpan-Hami basin. Conclusions can be useful for not only the exploration in the area but also the theory consult in the adjacent areas.
Resumo:
Reformed basin is a basin that underwent multiple immense reformation after the sedimentary stage, the major geologic elements of the petroleum system in the prototyped basin are destroyed to a certain extent, and their petroleum system has been reconstructed. This type of basin is frequently found in the course of exploration both home and abroad. In China, especially in the western and southern part of China, the basins in which oil explorations have been conducted are mostly reformed basins. The reformed basins from Paleozoic, Late Mesozoic to Cenozoic are widely distributed in West and South China. They are, and moreover, will be a challenge for oil and gas exploration. The conventional investigation and exploration techniques used in the slightly reconstructed basin just don't work well when facing the reformed basin. Therefore, the study on the reformed basin, especially the study on the pool-forming mechanism and reservoir prediction becomes a focus and one of difficulties for the geologists overseas and domestic. Yingen-Ejinaqi Basin is a typical case of the Late Mesozoic and Cenozoic reformed basins in China. It locates in West China and is a exploration frontier with difficulties and no break through is made for years. A comprehensive research on it will be of significance for oil and gas exploration in similar basins of China. The late research for reformed basin in China now is mainly concentrated on basin classification, formation mechanism, geologic features, and survey technique, distribution regularity of oil accumulation and its dominating factors, assessment of oil exploration prospect and target zones, etc. On the other hand, the study on the pool-forming mechanism and reservoir prediction seems insufficient in systematization, and the research is deficient in methodology and combination of qualitative and quantitative studies, as well as the application of the new theory and techniques. The current efforts are mainly directed to structures (faults), sedimentation, the relationship between reservoir evolution and oil accumulation, and some other relevant fields. However, the application of the new theory and techniques seems to be insufficient such as petroleum system, pool-forming dynamics, fluid pressure compartment, and basin simulation, etc. So is the dynamic and integrated research. As a result, incomplete knowledge and understandings derived from the research on pool-forming mechanism and reservoir prediction often do not accord with rea-lity of the basin. The study and exploration under the guidance of this knowledge will inevitably lead to errors and failure. This paper, based on the previous study of the other geologists on reformed basins, with emphasis on "wholeness or systematic, dynamic and integrated" research, presents a reverse thinking of beginning from conserved units in the basin and the combination of qualitative and quantitative study with new theory and technique by building a geological model. The paper also puts forward a new thought for studying the oil & gas accumulation and reservoir prediction , and establishes a new research system for reformed basin. It is verified by the known reservoir and oil accumulation area in the basin and has a practical value for use and reference. The new ideas and achievements in this research are as following: 1.This is the first time that the system for studying the reformed basin and its pool-forming mechanism and reservoir prediction is presented. A reverse thinking and combination of qualitative & quantitative are applied here with emphasis on "wholeness or systematic, dynamic and integrated" research, new theory, techniques & methods comprehensive use and geologic models building. 2. Identifying criterion and methods, classifying schemes, and denominating principles for the conserved units of reformed basins are presented in this paper. The geologic model of conserved units of Yingen-Ejinaqi Basin has been built. It is a practical method when combined with the traditional way for basin survey and the conserved units study. 3.The dynamic sources of basin deformation are believed to be stress, gravity and thermodynamics. The stress and gravity are key factors in basin deformation and pool forming, especially stress. Scientific proof is provided by classifying the functional type, style and range of the stress, gravity and thermodynamics. 4.The pool forming and reservoir distribution of Yingen-Ejinaqi Basin are controlled by multiple factors or geologic conditions or/and co-controlled by both of them. The qualitative and quantitative research on petroleum system and basin modeling will help us understand and determine the pool-forming period of the conserved unit (timing), the oil migrating direction (orientation), the oil accumulating region (location), the oil distributing border (bordering) and the size of oil accumulation (quantification). Thus the pool-forming and distribution zones can be predicted. 5.Three generating modes (reform-succession type, reform-destroyed type and reform-regenerating type or reform-newborn type) of pool forming for reformed basins are presented here, together with the inner relationships between basin deformation type, overlapping style and pool-forming modes. The pool-forming modes are determined by deformation type and overlapping style. Reservoir distribution will be predicted based on the modes and other concrete pool-forming conditions. 6.The evaluation methods of the conserved units and zones and the parameter selection are reliable in optimal selecting of target zones. The technical terms, new ideas and methods for the study of reformed basins, the pool-forming mechanism and reservoir prediction are presented in this paper. The concepts and terms, the identifying criterion, the denominating principles, the generating modes for pool forming, the methods of reservoir prediction, and the evaluation techniques for conserved units and zones can be used for reference in studies on the petroleum exploration of reformed basins in China and abroad. It serves as a typical example for further research of the reformed basins and the geologic regulations of oil accumulation. It has a practical value of use and reference. The future research in the field of pool-forming mechanism of the reformed basins may well be on the process simulation of pool-forming dynamics of the reformed basins. Experimental work has been conducted to simulate the processes by using quantitative and qualitative methods combined. The further study in this field calls for more efforts.
Resumo:
During the exploration of fractured reservoirs, worldwide difficult problems will be encountered: how to locate the fractured zones, how to quantitatively determine the azimuth, density, and distribution of the fractures, and how to compute the permeability and porosity of the fractures. In an endeavor to solve these problems, the fractured shale reservoir in SiKou area of ShengLi oil field was chosen as a study area. A study of seismic predictive theory and methods for solving problems encountered in fractured reservoir exploration are examined herein. Building on widely used current fractured reservoir exploration techniques, new seismic theories and methods focusing on wave propagation principles in anisotropic medium are proposed. Additionally, integrated new seismic data acquisition and processing methods are proposed. Based on research and application of RVA and WA methods from earlier research, a new method of acoustic impedance varying with azimuth (IPVA) creatively is put forth. Lastly combining drilling data, well log data, and geologic data, an integrated seismic predictive method for cracked reservoir bed was formed. A summary of the six parts of research work of this paper is outlined below. In part one, conventional geologic and geophysical prediction methods etc. for cracked reservoir exploration are examined, and the weaknesses of these approaches discussed. In part two, seismic wave propagation principles in cracked reservoirs are studied. The wave equation of seismic velocity and attenuation factor in three kinds of fracture mediums is induced, and the azimuth anisotropy of velocity and attenuation in fracture mediums is determined. In part three, building on the research and application of AVA and WA methods by a former researcher, a new method of acoustic impedance creatively varying with azimuth (IPVA) is introduced. A practical software package utilizing this technique is also introduced. In part four, Base on previously discussed theory, first a large full azimuth 3d seismic data (70km~2) was designed and acquired. Next, the volume was processed with conventional processing sequence. Then AVA, WA, and IPVA processing was applied, and finally the azimuth and density of the fractures were quantitatively determined by an integrated method. Predictions were supported by well data that indicate the approach is highly reliable. in part five, geological conditions contributing to cracked reservoir bed formation are analyzed in the LuoJia area resulting in the discovery that the main fractured zones are related to fault distribution in the basin, that also control the accumulation of the oil and gas, the generation mechanisms and types of fractured shale reservoirs are studied. Lastly, by using full 3D seismic attributes, azimuth and density of cracked reservoir zones are successfully quantitative predicted. Using an integrated approach that incorporates seismic, geologic and well log data, the best two fractured oil prospects in LouJia area are proposed. These results herein represent a break through in seismic technology, integrated seismic predictive theory, and production technology for fractured reservoirs. The approach fills a void that can be applied both inside China, and internationally. Importantly, this technique opens a new exploration play in the ShengLi oil field that while difficult has substantial potential. Properly applied, this approach could play an important role toward stabilizing the oil field' production. In addition, this technique could be extended fracture exploration in other oil fields producing substantial economic reward.
Resumo:
At present the main object of the exploration and development (E&D) of oil and gas is not the structural oil-gas pools but the subtle lithological oil-gas reservoir. Since the last 90's, the ratio of this kind of pools in newly-added oil reserves is becoming larger and larger, so is the ratio in the eastern oilfields. The third oil-gas resource evaluation indicates the main exploration object of Jiyang depression is the lithological oil-gas pools in future. However, lack of effective methods that are applied to search for this kind of pool makes E&D difficult and the cost high. In view of the urgent demand of E&D, in this paper we deeply study and analyze the theory and application in which the seismic attributes are used to predict and describe lithological oil-gas reservoirs. The great results are obtained by making full use of abundant physics and reservoir information as well as the remarkable lateral continuity involved in seismic data in combination with well logging, drilling-well and geology. ①Based on a great deal of research and different geological features of Shengli oilfield, the great progresses are made some theories and methods of seismic reservoir prediction and description. Three kinds of extrapolation near well seismic wavelet methods-inverse distance interpolation, phase interpolation and pseudo well reflectivity-are improved; particularly, in sparse well area the method of getting pseudo well reflectivity is given by the application of the wavelet theory. The formulae for seismic attributes and coherent volumes are derived theoretically, and the optimal method of seismic attributes and improved algorithms of picking up coherent data volumes are put forward. The method of making sequence analysis on seismic data is put forward and derived in which the wavelet transform is used to analyze not only qualitatively but also quantitatively seismic characteristics of reservoirs.② According to geologic model and seismic forward simulation, from macro to micro, the method of pre- and post-stack data synthetic analysis and application is put forward using seismic in close combination with geology; particularly, based on making full use of post-stack seismic data, "green food"-pre-stack seismic data is as possible as utilized. ③ In this paper, the formative law and distributing characteristic of lithologic oil-gas pools of the Tertiary in Jiyang depression, the knowledge of geological geophysics and the feasibility of all sorts of seismic methods, and the applied knowledge of seismic data and the geophysical mechanism of oil-gas reservoirs are studied. Therefore a series of perfect seismic technique and software are completed that fit to E&D of different categories of lithologic oil-gas reservoirs. ④ This achievement is different from other new seismic methods that are put forward in the recent years, that is multi-wave multi-component seismic, cross hole seismic, vertical seismic, and time-lapse seismic etc. that need the reacquisition of seismic data to predict and describe the oil-gas reservoir. The method in this paper is based on the conventional 2D/3D seismic data, so the cost falls sharply. ⑤ In recent years this technique that predict and describe lithologic oil-gas reservoirs by seismic information has been applied in E&D of lithologic oil-gas reservoirs on glutenite fans in abrupt slop and turbidite fans in front of abrup slop, slump turbidite fans in front of delta, turbidite fans with channel in low slope and channel sanbody, and a encouraging geologic result has been gained. This achievement indicates that the application of seismic information is one of the most effective ways in solving the present problem of E&D. This technique is significant in the application and popularization, and positive on increasing reserves and raising production as well as stable development in Shengli oilfield. And it will be directive to E&D of some similar reservoirs