995 resultados para O MIXED-OXIDE
Resumo:
After 13 days of weight maintenance diet (13,720 +/- 620 kJ/day, 40% fat, 15% protein, and 45% carbohydrate), five young men (71.3 +/- 7.1 kg, 181 +/- 8 cm; means +/- SD) were overfed for 9 days at 1.6 times their maintenance requirements (i.e., +8,010 kJ/day). Twenty-four-hour energy expenditure (24-h EE) and basal metabolic rate (BMR) were measured on three occasions, once after 10 days on the weight-maintenance diet and after 2 and 9 days of overfeeding. Physical activity was monitored throughout the study, body composition was measured by underwater weighing, and nitrogen balance was assessed for 3 days during the two experimental periods. Overfeeding caused an increase in body weight averaging 3.2 kg of which 56% was fat as measured by underwater weighing. After 9 days of overfeeding, BMR increased by 622 kJ/day, which could explain one-third of the increase in 24-h EE (2,038 kJ/day); the remainder was due to the thermic effect of food (which increased in proportion with excess energy intake) and the increased cost of physical activity, related to body weight gain. This study shows that approximately one-quarter of the excess energy intake was dissipated through an increase in EE, with 75% being stored in the body. Under our experimental conditions of mixed overfeeding in which body composition measurements were combined with those of energy balance, it was possible to account for all of the energy ingested in excess of maintenance requirements.
Resumo:
The bioavailability of nitric oxide (NO) within the vascular wall is limited by superoxide anions (O2.-). The relevance of extracellular superoxide dismutase (ecSOD) for the detoxification of vascular O2.- is unknown. We determined the involvement of ecSOD in the control of blood pressure and endothelium-dependent responses in angiotensin II-induced hypertension and renovascular hypertension induced by the two-kidney, one-clip model in wild-type mice and mice lacking the ecSOD gene. Blood pressure was identical in sham-operated ecSOD+/+ and ecSOD-/- mice. After 6 days of angiotensin II-treatment and 2 and 4 weeks after renal artery clipping, blood pressure was significantly higher in ecSOD-/- than ecSOD+/+ mice. Recombinant ecSOD selectively decreased blood pressure in hypertensive ecSOD-/- mice, whereas ecSOD had no effect in normotensive and hypertensive ecSOD+/+ mice. Compared with sham-operated ecSOD+/+ mice, sham-operated ecSOD-/- mice exhibited attenuated acetylcholine-induced relaxations. These responses were further depressed in vessels from clipped animals. Vascular O2.-, as measured by lucigenin chemiluminescence, was higher in ecSOD-/- compared with ecSOD+/+ mice and was increased by clipping. The antioxidant tiron normalized relaxations in vessels from sham-operated and clipped ecSOD-/-, as well as from clipped ecSOD+/+ mice. In contrast, in vivo application of ecSOD selectively enhanced endothelium-dependent relaxation in vessels from ecSOD-/- mice. These data reveal that endogenous ecSOD is a major antagonistic principle to vascular O2.-, controlling blood pressure and vascular function in angiotensin II-dependent models of hypertension. ecSOD is expressed in such an abundance that even in situations of high oxidative stress no relative lack of enzyme activity occurs.
Resumo:
The objectives of this work were to estimate the genetic and phenotypic parameters and to predict the genetic and genotypic values of the selection candidates obtained from intraspecific crosses in Panicum maximum as well as the performance of the hybrid progeny of the existing and projected crosses. Seventy-nine intraspecific hybrids obtained from artificial crosses among five apomictic and three sexual autotetraploid individuals were evaluated in a clonal test with two replications and ten plants per plot. Green matter yield, total and leaf dry matter yields and leaf percentage were evaluated in five cuts per year during three years. Genetic parameters were estimated and breeding and genotypic values were predicted using the restricted maximum likelihood/best linear unbiased prediction procedure (REML/BLUP). The dominant genetic variance was estimated by adjusting the effect of full-sib families. Low magnitude individual narrow sense heritabilities (0.02-0.05), individual broad sense heritabilities (0.14-0.20) and repeatability measured on an individual basis (0.15-0.21) were obtained. Dominance effects for all evaluated characteristics indicated that breeding strategies that explore heterosis must be adopted. Less than 5% increase in the parameter repeatability was obtained for a three-year evaluation period and may be the criterion to determine the maximum number of years of evaluation to be adopted, without compromising gain per cycle of selection. The identification of hybrid candidates for future cultivars and of those that can be incorporated into the breeding program was based on the genotypic and breeding values, respectively. The prediction of the performance of the hybrid progeny, based on the breeding values of the progenitors, permitted the identification of the best crosses and indicated the best parents to use in crosses.
Resumo:
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
Resumo:
BACKGROUND/AIMS: Bacillus Calmette Guerin (BCG) infection causes hepatic injury following granuloma formation and secretion of cytokines which render mice highly sensitive to endotoxin-mediated hepatotoxicity. This work investigates the role of inducible nitric oxide synthase (iNOS) in liver damage induced by BCG and endotoxins in BCG-infected mice. METHODS: Liver injury and cytokine activation induced by BCG and by LPS upon BCG infection (BCG/LPS) were compared in wild-type and iNOS-/- mice. RESULTS: iNOS-/- mice infected with living BCG are protected from hepatic injury when compared to wild-type mice which express iNOS protein in macrophages forming hepatic granulomas. In addition, iNOS-/- mice show a decrease in BCG-induced IFN-gamma serum levels. LPS challenge in BCG-infected mice strongly activates iNOS in the liver and spleen of wild-type mice which show important liver damage associated with a dramatic increase in TNF and IL-6 and also Th1 type cytokines. In contrast, iNOS-/- mice are protected from liver injury after BCG/LPS challenge and their TNF, IL-6 and Th1 type cytokine serum levels raise moderately. CONCLUSIONS: These results demonstrate that nitric oxide (NO) from iNOS is involved in hepatotoxicity induced by both mycobacterial infection and endotoxin effects upon BCG infection and that inhibition of NO from iNOS protects from liver injuries.
Resumo:
Through this article, we propose a mixed management of patients' medical records, so as to share responsibilities between the patient and the Medical Practitioner by making Patients responsible for the validation of their administrative information, and MPs responsible for the validation of their Patients' medical information. Our proposal can be considered a solution to the main problem faced by patients, health practitioners and the authorities, namely the gathering and updating of administrative and medical data belonging to the patient in order to accurately reconstitute a patient's medical history. This method is based on two processes. The aim of the first process is to provide a patient's administrative data, in order to know where and when the patient received care (name of the health structure or health practitioner, type of care: out patient or inpatient). The aim of the second process is to provide a patient's medical information and to validate it under the accountability of the Medical Practitioner with the help of the patient if needed. During these two processes, the patient's privacy will be ensured through cryptographic hash functions like the Secure Hash Algorithm, which allows pseudonymisation of a patient's identity. The proposed Medical Record Search Engines will be able to retrieve and to provide upon a request formulated by the Medical ractitioner all the available information concerning a patient who has received care in different health structures without divulging the patient's identity. Our method can lead to improved efficiency of personal medical record management under the mixed responsibilities of the patient and the MP.
Resumo:
In the past decade, many studies have been conducted to determine the health effects induced by exposure to engineered nanomaterials (NMs). Specifically for exposure via inhalation, numerous in vitro and animal in vivo inhalation toxicity studies on several types of NMs have been published. However, these results are not easily extrapolated to judge the effects of inhaling NMs in humans, and few published studies on the human response to inhalation of NMs exist. Given the emergence of more industries utilizing iron oxide nanoparticles as well as more nanomedicine applications of superparamagnetic iron oxide nanoparticles (SPIONs), this review presents an overview of the inhalation studies that have been conducted in humans on iron oxides. Both occupational exposure studies on complex iron oxide dusts and fumes, as well as human clinical studies on aerosolized, micron-size iron oxide particles are discussed. Iron oxide particles have not been described to elicit acute inhalation response nor promote lung disease after chronic exposure. The few human clinical studies comparing inhalation of fine and ultrafine metal oxide particles report no acute changes in the health parameters measured. Taken together existing evidence suggests that controlled human exposure to iron oxide nanoparticles, such as SPIONs, could be conducted safely.
Resumo:
Intrusion of deicing materials and surface water into concrete bridge decks is a main contributor in deck reinforcing steel corrosion and concrete delamination. Salt, spread on bridge decks to melt ice, dissolves in water and permeates voids in the concrete deck. When the chloride content of the concrete in contact with reinforcing steel reaches a high enough concentration, the steel oxidizes. In Iowa, the method used to reduce bridge deck chloride penetration is the application of a low slump dense concrete overlay after the completion of all Class A and Class B floor repairs. A possible alternative to the use of dense concrete overlays, developed by Poly-Carb, Inc., is the MARK-163 FLEXOGRID Overlay System. FLEXOGRID is a two component system of epoxy and urethane which is applied on a bridge deck to a minimum thickness of ¼ inch. An aggregate mixture of silica quartz and aluminum oxide is broadcast onto the epoxy at a prescribed rate to provide deck protection and superior friction properties. The material is mixed on site and applied to the deck in a series of lifts (usually two) until the desired overlay thickness has been attained.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load-displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
In this work, zinc indium tin oxide layers with different compositions are used as the active layer of thin film transistors. This multicomponent transparent conductive oxide is gaining great interest due to its reduced content of the scarce indium element. Experimental data indicate that the incorporation of zinc promotes the creation of oxygen vacancies. In thin-film transistors this effect leads to a higher threshold voltage values. The field-effect mobility is also strongly degraded, probably due to coulomb scattering by ionized defects. A post deposition annealing in air reduces the density of oxygen vacancies and improves the fieldeffect mobility by orders of magnitude. Finally, the electrical characteristics of the fabricated thin-film transistors have been analyzed to estimate the density of states in the gap of the active layers. These measurements reveal a clear peak located at 0.3 eV from the conduction band edge that could be attributed to oxygen vacancies.
Resumo:
Abstract
Resumo:
Adaptive immune responses are initiated when T cells encounter antigen on dendritic cells (DC) in T zones of secondary lymphoid organs. T zones contain a 3-dimensional scaffold of fibroblastic reticular cells (FRC) but currently it is unclear how FRC influence T cell activation. Here we report that FRC lines and ex vivo FRC inhibit T cell proliferation but not differentiation. FRC share this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. We identified FRC as strong source of nitric oxide (NO) thereby directly dampening T cell expansion as well as reducing the T cell priming capacity of DC. The expression of inducible nitric oxide synthase (iNOS) was up-regulated in a subset of FRC by both DC-signals as well as interferon-γ produced by primed CD8+ T cells. Importantly, iNOS expression was induced during viral infection in vivo in both LN FRC and DC. As a consequence, the primary T cell response was found to be exaggerated in Inos(-/-) mice. Our findings highlight that in addition to their established positive roles in T cell responses FRC and DC cooperate in a negative feedback loop to attenuate T cell expansion during acute inflammation.
Resumo:
Rapport de synthèse : Le monoxyde d'azote (NO) joue un rôle important dans la régulation de l'homéostasie du système cardiovasculaire et du glucose. Les souris déficientes pour le gène codant l'isoforme neuronale de la synthase de monoxyde d'azote (nNOS) sont résistantes à l'insuline, mais les mécanismes sous-jacents sont inconnus. Le manque de NO produit par la nNOS pourrait être à l'origine d'une diminution de la perfusion du muscle squelettique et ainsi d'une diminution de l'apport de substrat. Alternativement, le déficit de nNOS normalement hautement exprimé dans le tissu musculaire squelettique pourrait directement y perturber la consommation de glucose. Finalement l'absence de l'action sympatholytique du NO neuronal pourrait diminuer la sensibilité à l'insuline. Afin de tester ces hypothèses nous avons étudié, chez des souris déficientes en nNOS et des souris-contrôle, la consommation corporelle totale de glucose et le flux musculaire squelettique pendant des clamps hyperinsulinémiques euglycémiques in vivo, ainsi que la consommation de glucose dans le muscle squelettique in vitro. De plus nous avons analysé les effets d'une inhibition alpha-adrénergique sur la consommation de glucose pendant les clamps hyperinsulinémiques euglycémiques in vivo. Le taux de perfusion de glucose pendant les clamps était grossièrement 15 pourcent plus bas (P<0.001) chez les souris déficientes en nNOS que chez les souris-contrôle. Cette résistance à l'insuline chez les souris déficientes en nNOS n'était due ni à une stimulation déficiente du flux sanguin musculaire par l'insuline ni à un défaut intrinsèque de la consommation de glucose du muscle (qui étaient comparables dans les deux groupes), mais à un mécanisme alpha-adrénergique, car l'administration de phentolamine rétablissait la sensibilité à l'insuline chez les souris déficientes en nNOS. Ces résultats suggèrent qu'une hyperactivité sympathique, potentiellement due à la perte de l'inhibition neuronale centrale du flux sympathique par le NO provenant de nNOS, contribue à la résistance à l'insuline des souris déficientes en nNOS. Par ailleurs ces résultats tendent à prouver qu'un défaut de production de NO provoquerait une résistance à l'insuline par des mécanismes différents selon l'isoforme de NO synthase déficiente (par exemple chez les souris déficientes pour la forme endothéliale de NO synthase, il a été montré que la résistance à l'insuline est due à un défaut de stimulation de la perfusion musculaire par l'insuline et à un défaut du signalling de l'insuline dans la cellule musculaire squelettique). Chez l'être humain il est établi que les états de résistance à l'insuline sont associés à une synthèse défectueuse et/ou une mauvaise biodisponibilité du NO, ainsi qu'à une hyperactivité sympathique. Nous spéculons que la perte d'inhibition centrale du flux sympathique représente un mécanisme contribuant à la résistance à l'insuline et ses complications cardiovasculaires chez l'être humain.
Resumo:
Background/Aim: Lipoprotein lipase (LPL) is the main enzyme responsible for the distribution of circulating triacylglycerides in tissues. Its regulation via release from active sites in the vascular endothelium is poorly understood. In a previous study we reported that in response to acute immobilization (IMMO), LPL activity rapidly increases in plasma and decreases in white adipose tissue (WAT) in rats. In other stress situations IMMO triggers a generalized increase in nitric oxide (NO) production. Methods/Results: Here we demonstrate that in rats: 1) in vivo acute IMMO rapidly increases NO concentrations in plasma 2) during acute IMMO the WAT probably produces NO via the endothelial isoform of nitric oxide synthase (eNOS) from vessels, and 3) epididymal WAT perfused in situ with an NO donor rapidly releases LPL from the endothelium. Conclusion: We propose the following chain of events: stress stimulus / rapid increase of NO production in WAT (by eNOS) / release of LPL from the endothelium in WAT vessels. This chain of events could be a new mechanism that promotes the rapid decrease of WAT LPL activity in response to a physiological stimulus.