919 resultados para Numerical Model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Any safety assessment of a permanent repository for radioactive waste has to include an analysis of the geomechanical stability of the repository and integrity of the geological barrier. Such an analysis is based on geological and engineering geological studies of the site, on laboratory and in-situ experiments, and on numerical calculations. Central part of the safety analysis is the geomechanical modelling of the host rock. The model should simulate as closely as possible the conditions at the site and the behaviour of the rock (e.g., geology, repository geometry, initial rock stress, and constitutive models). On the basis of the geomechanical model numerical calculations are carried out using the finite-element method and an appropriate discretization of the repository and the host rock. The assessment of the repository stability and the barrier integrity is based on calculated stress and deformation and on the behaviour of the host rock measured and observed in situ. An example of the geomechanical analysis of the stability and integrity of the Bartensieben mine, a former salt mine, is presented. This mine is actually used as a repository for low level radioactive waste. The example includes all necessary steps of geological, engineering geological, and geotechnical investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As advances in numerical modelling techniques support the increased confidence in predictions from computer simulations, the need remains to have experimental verification built into the design process. This paper outlines the experimental investigation carried out on a shielded vertical axis turbine in a marine environment. The experiments consist of performance measurements and the use of particle image velocimetry on a small scale device in a marine current flume. The results demonstrate that the performance of the device can be modelled numerically; in particular, the results show that the numerical model used can correctly predict the increase in performance with Reynolds number.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil na Área de Especialização de Estruturas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, 2015.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal characterizations of high power light emitting diodes (LEDs) and laser diodes (LDs) are one of the most critical issues to achieve optimal performance such as center wavelength, spectrum, power efficiency, and reliability. Unique electrical/optical/thermal characterizations are proposed to analyze the complex thermal issues of high power LEDs and LDs. First, an advanced inverse approach, based on the transient junction temperature behavior, is proposed and implemented to quantify the resistance of the die-attach thermal interface (DTI) in high power LEDs. A hybrid analytical/numerical model is utilized to determine an approximate transient junction temperature behavior, which is governed predominantly by the resistance of the DTI. Then, an accurate value of the resistance of the DTI is determined inversely from the experimental data over the predetermined transient time domain using numerical modeling. Secondly, the effect of junction temperature on heat dissipation of high power LEDs is investigated. The theoretical aspect of junction temperature dependency of two major parameters – the forward voltage and the radiant flux – on heat dissipation is reviewed. Actual measurements of the heat dissipation over a wide range of junction temperatures are followed to quantify the effect of the parameters using commercially available LEDs. An empirical model of heat dissipation is proposed for applications in practice. Finally, a hybrid experimental/numerical method is proposed to predict the junction temperature distribution of a high power LD bar. A commercial water-cooled LD bar is used to present the proposed method. A unique experimental setup is developed and implemented to measure the average junction temperatures of the LD bar. After measuring the heat dissipation of the LD bar, the effective heat transfer coefficient of the cooling system is determined inversely. The characterized properties are used to predict the junction temperature distribution over the LD bar under high operating currents. The results are presented in conjunction with the wall-plug efficiency and the center wavelength shift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediment oxygen demand (SOD) can be a significant oxygen sink in various types of water bodies, particularly slow-moving waters with substantial organic sediment accumulation. In most settings where SOD is a concern, the prevailing hydraulic conditions are such that the impact of sediment resuspension on SOD is not considered. However, in the case of Bubbly Creek in Chicago, Illinois, the prevailing slack water conditions are interrupted by infrequent intervals of very high flow rates associated with pumped combined sewer overflow (CSO) during intense hydrologic events. These events can cause resuspension of the highly organic, nutrient-rich bottom sediments, resulting in precipitous drawdown of dissolved oxygen (DO) in the water column. While many past studies have addressed the dependence of SOD on near-bed velocity and bed shear stress prior to the point of sediment resuspension, there has been limited research that has attempted to characterize the complex and dynamic phenomenon of resuspended-sediment oxygen demand. To address this issue, a new in situ experimental apparatus referred to as the U of I Hydrodynamic SOD Sampler was designed to achieve a broad range of velocities and associated bed shear stresses. This allowed SOD to be analyzed across the spectrum of no sediment resuspension associated with low velocity/ bed shear stress through full sediment resuspension associated with high velocity / bed shear stress. The current study split SOD into two separate components: (1) SODNR is the sediment oxygen demand associated with non-resuspension conditions and is a surface sink calculated using traditional methods to yield a value with units (g/m2/day); and (2) SODR is the oxygen demand associated with resuspension conditions, which is a volumetric sink most accurately characterized using non-traditional methods and units that reflect suspension in the water column (mg/L/day). In the case of resuspension, the suspended sediment concentration was analyzed as a function of bed shear stress, and a formulation was developed to characterize SODR as a function of suspended sediment concentration in a form similar to first-order biochemical oxygen demand (BOD) kinetics with Monod DO term. The results obtained are intended to be implemented into a numerical model containing hydrodynamic, sediment transport, and water quality components to yield oxygen demand varying in both space and time for specific flow events. Such implementation will allow evaluation of proposed Bubbly Creek water quality improvement alternatives which take into account the impact of SOD under various flow conditions. Although the findings were based on experiments specific to the conditions in Bubbly Creek, the techniques and formulations developed in this study should be applicable to similar sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Programa de Pós-Graduação em Geotecnia, 2015.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Crossing the Franco-Swiss border, the Large Hadron Collider (LHC), designed to collide 7 TeV proton beams, is the world's largest and most powerful particle accelerator the operation of which was originally intended to commence in 2008. Unfortunately, due to an interconnect discontinuity in one of the main dipole circuit's 13 kA superconducting busbars, a catastrophic quench event occurred during initial magnet training, causing significant physical system damage. Furthermore, investigation into the cause found that such discontinuities were not only present in the circuit in question, but throughout the entire LHC. This prevented further magnet training and ultimately resulted in the maximum sustainable beam energy being limited to approximately half that of the design nominal, 3.5-4 TeV, for the first three years of operation (Run 1, 2009-2012) and a major consolidation campaign being scheduled for the first long shutdown (LS 1, 2012-2014). Throughout Run 1, a series of studies attempted to predict the amount of post-installation training quenches still required to qualify each circuit to nominal-energy current levels. With predictions in excess of 80 quenches (each having a recovery time of 8-12+ hours) just to achieve 6.5 TeV and close to 1000 quenches for 7 TeV, it was decided that for Run 2, all systems be at least qualified for 6.5 TeV operation. However, even with all interconnect discontinuities scheduled to be repaired during LS 1, numerous other concerns regarding circuit stability arose. In particular, observations of an erratic behaviour of magnet bypass diodes and the degradation of other potentially weak busbar sections, as well as observations of seemingly random millisecond spikes in beam losses, known as unidentified falling object (UFO) events, which, if persist at 6.5 TeV, may eventually deposit sufficient energy to quench adjacent magnets. In light of the above, the thesis hypothesis states that, even with the observed issues, the LHC main dipole circuits can safely support and sustain near-nominal proton beam energies of at least 6.5 TeV. Research into minimising the risk of magnet training led to the development and implementation of a new qualification method, capable of providing conclusive evidence that all aspects of all circuits, other than the magnets and their internal joints, can safely withstand a quench event at near-nominal current levels, allowing for magnet training to be carried out both systematically and without risk. This method has become known as the Copper Stabiliser Continuity Measurement (CSCM). Results were a success, with all circuits eventually being subject to a full current decay from 6.5 TeV equivalent current levels, with no measurable damage occurring. Research into UFO events led to the development of a numerical model capable of simulating typical UFO events, reproducing entire Run 1 measured event data sets and extrapolating to 6.5 TeV, predicting the likelihood of UFO-induced magnet quenches. Results provided interesting insights into the involved phenomena as well as confirming the possibility of UFO-induced magnet quenches. The model was also capable of predicting that such events, if left unaccounted for, are likely to be commonplace or not, resulting in significant long-term issues for 6.5+ TeV operation. Addressing the thesis hypothesis, the following written works detail the development and results of all CSCM qualification tests and subsequent magnet training as well as the development and simulation results of both 4 TeV and 6.5 TeV UFO event modelling. The thesis concludes, post-LS 1, with the LHC successfully sustaining 6.5 TeV proton beams, but with UFO events, as predicted, resulting in otherwise uninitiated magnet quenches and being at the forefront of system availability issues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized numerical model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean located between 70 and 40° S. It incorporates physical ingredients deemed essential for Southern Ocean functioning: rough topography, seasonally varying air–sea fluxes, and high-latitude storms with analytical form. The forcing strategy ensures that the time mean wind stress is the same between the different simulations, so the effect of the storms on the mean wind stress and resulting impacts on the Southern Ocean dynamics are not considered in this study. Level and distribution of mixing attributable to high-frequency winds are quantified and compared to those generated by eddy–topography interactions and dissipation of the balanced flow. Results suggest that (1) the synoptic atmospheric variability alone can generate the levels of mid-depth dissipation frequently observed in the Southern Ocean (10−10–10−9 W kg−1) and (2) the storms strengthen the overturning, primarily through enhanced mixing in the upper 300 m, whereas deeper mixing has a minor effect. The sensitivity of the results to horizontal resolution (20, 5, 2 and 1 km), vertical resolution and numerical choices is evaluated. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation. Overall, submesoscale-permitting ocean modeling exhibits important delicacies owing to a lack of convergence of key components of its energetics even when reaching Δx =  1 km.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabajo tiene como objetivo la mejora en la validación de la simulación numérica del flujo bifásico característico del transporte de lecho fluido, mediante la formulación y desarrollo de un modelo numérico combinado Volúmenes Finitos - Elementos Finitos. Para ello se simula numéricamente el flujo de mezcla sólido-gas en una Cámara de Lecho Fluido, bajo implementación en código COMSOL, cuyos resultados son mejores comparativamente a un modelo basado en el método de Elementos Discretos implementado en código abierto MFIX. El problema fundamental de la modelización matemática del fenómeno de lecho fluido es la irregularidad del dominio, el acoplamiento de las variables en espacio y tiempo y, la no linealidad. En esta investigación se reformula apropiadamente las ecuaciones conservativas del fenómeno, tales que permitan obtener un problema variacional equivalente y solucionable numéricamente. Entonces; se define una ecuación de estado en función de la presión hidrodinámica y la fracción volumétrica de sólidos, quedando desacoplado el sistema en tres sub-problemas, garantizando así la existencia de solución del problema general. Una vez aproximados numéricamente ambos modelos, se comparan los resultados de donde se observa que el modelo materia del presente artículo, verifica de forma más eficaz las condiciones de mezcla óptima, reflejada en la calidad del burbujeo y velocidad de mezcla.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evaluation of the mesh opening stiffness of fishing nets is an important issue in assessing the selectivity of trawls. It appeared that a larger bending rigidity of twines decreases the mesh opening and could reduce the escapement of fish. Nevertheless, netting structure is complex. A netting is made up of braided twines made of polyethylene or polyamide. These twines are tied with non-symmetrical knots. Thus, these assemblies develop contact-friction interactions. Moreover, the netting can be subject to large deformation. In this study, we investigate the responses of netting samples to different types of solicitations. Samples are loaded and unloaded with creep and relaxation stages, with different boundary conditions. Then, two models have been developed: an analytical model and a finite element model. The last one was used to assess, with an inverse identification algorithm, the bending stiffness of twines. In this paper, experimental results and a model for netting structures made up of braided twines are presented. During dry forming of a composite, for example, the matrix is not present or not active, and relative sliding can occur between constitutive fibres. So an accurate modelling of the mechanical behaviour of fibrous material is necessary. This study offers experimental data which could permit to improve current models of contact-friction interactions [4], to validate models for large deformation analysis of fibrous materials [1] on a new experimental case, then to improve the evaluation of the mesh opening stiffness of a fishing net

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The French research EMACOP project aims at characterising wave power nearby onshore structures. This paper presents the application of the non-hydrostatic wave-flow model SWASH to wave propagation and transformation on two hot spots in Brittany. The numerical simulations were performed for dominant wave conditions and three tide levels. The results of wave simulations allow us to characterise wave energy resources and define Wave Energy Converters (WEC)'s promising positions on both sites.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This manuscript presents three approaches : analytical, experimental and numerical, to study the behaviour of a flexible membrane tidal energy converter. This technology, developed by the EEL Energy company, is based on periodic deformations of a pre-stressed flexible structure. Energy converters, located on each side of the device, are set into motion by the wave-like motion. In the analytical model, the membrane is represented by a linear beam model at one dimension and the flow by a 3 dimensions potential fluid. The fluid forces are evaluated by the elongated body theory. Energy is dissipated all over the length of the membrane. A 20th scale experimental prototype has been designed with micro-dampers to simulate the power take-off. Trials have allowed to validate the undulating membrane energy converter concept. A numerical model has been developed. Each element of the device is represented and the energy dissipation is done by dampers element with a damping law linear to damper velocity. Comparison of the three approaches validates their ability to represent the membrane behaviour without damping. The energy dissipation applied with the analytical model is clearly different from the two other models because of the location (where the energy is dissipated) and damping law. The two others show a similar behaviour and the same order of power take off repartition but value of power take off are underestimated by the numerical model. This three approaches have allowed to put forward key-parameters on which depend the behaviour of the membrane and the parametric study highlights the complementarity and the advantage of developing three approaches in parallel to answer industrial optimization problems. To make the link between trials in flume tank and sea trials, a 1/6th prototype has been built. To do so, the change of scale was studied. The behaviour of both prototypes is compared and differences could be explained by differences of boundary conditions and confinement effects. To evaluated membrane long-term behaviour at sea, a method of ageing accelerated by temperature and fatigue tests have been carried out on prototype materials samples submerged in sea water.