961 resultados para Nuclear magnetic resonance tube


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proton magnetic resonance spectroscopy ((1)H-MRS) provides tissue metabolic information in vivo. This article reviews the role of MRS-determined metabolic alterations in lesions, normal-appearing white matter, gray matter, and spinal cord in advancing our knowledge of pathologic changes in multiple sclerosis (MS). In addition, the role of MRS in objectively evaluating therapeutic efficacy is reviewed. This potential metabolic information makes MRS a unique tool to follow MS disease evolution, understand its pathogenesis, evaluate the disease severity, establish a prognosis, and objectively evaluate the efficacy of therapeutic interventions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To develop and implement a method for improved cerebellar tissue classification on the MRI of brain by automatically isolating the cerebellum prior to segmentation. MATERIALS AND METHODS: Dual fast spin echo (FSE) and fluid attenuation inversion recovery (FLAIR) images were acquired on 18 normal volunteers on a 3 T Philips scanner. The cerebellum was isolated from the rest of the brain using a symmetric inverse consistent nonlinear registration of individual brain with the parcellated template. The cerebellum was then separated by masking the anatomical image with individual FLAIR images. Tissues in both the cerebellum and rest of the brain were separately classified using hidden Markov random field (HMRF), a parametric method, and then combined to obtain tissue classification of the whole brain. The proposed method for tissue classification on real MR brain images was evaluated subjectively by two experts. The segmentation results on Brainweb images with varying noise and intensity nonuniformity levels were quantitatively compared with the ground truth by computing the Dice similarity indices. RESULTS: The proposed method significantly improved the cerebellar tissue classification on all normal volunteers included in this study without compromising the classification in remaining part of the brain. The average similarity indices for gray matter (GM) and white matter (WM) in the cerebellum are 89.81 (+/-2.34) and 93.04 (+/-2.41), demonstrating excellent performance of the proposed methodology. CONCLUSION: The proposed method significantly improved tissue classification in the cerebellum. The GM was overestimated when segmentation was performed on the whole brain as a single object.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. METHODS This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20-29, 30-49, 50-69, and ≥70 years) and cardiac measurements were compared using Pearson's rank correlation over the four different groups. RESULTS With advanced age a slight but significant decrease in ESV (r=-0.41 for both ventricles, P<0.001) and EDV (r=-0.39 for left ventricle, r=-0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). CONCLUSIONS The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compromised blood-spinal cord barrier (BSCB) is a factor in the outcome following traumatic spinal cord injury (SCI). Vascular endothelial growth factor (VEGF) is a potent stimulator of angiogenesis and vascular permeability. The role of VEGF in SCI is controversial. Relatively little is known about the spatial and temporal changes in the BSCB permeability following administration of VEGF in experimental SCI. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies were performed to noninvasively follow spatial and temporal changes in the BSCB permeability following acute administration of VEGF in experimental SCI over a post-injury period of 56 days. The DCE-MRI data was analyzed using a two-compartment pharmacokinetic model. Animals were assessed for open field locomotion using the Basso-Beattie-Bresnahan score. These studies demonstrate that the BSCB permeability was greater at all time points in the VEGF-treated animals compared to saline controls, most significantly in the epicenter region of injury. Although a significant temporal reduction in the BSCB permeability was observed in the VEGF-treated animals, BSCB permeability remained elevated even during the chronic phase. VEGF treatment resulted in earlier improvement in locomotor ability during the chronic phase of SCI. This study suggests a beneficial role of acutely administered VEGF in hastening neurobehavioral recovery after SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) were used to non-invasively determine if cirrhosis induced by carbon tetrachloride (CCl$\sb4$) and phospholipase-D (PLD) could be distinguished from fatty infiltration in rat. MRS localization and water suppression methods were developed, implemented and evaluated in terms of their application to in vivo proton NMR studies of experimental liver disease. MRS studies were also performed to quantitate fatty infiltration resulting from carbon tetrachloride (CCl$\sb4$) or alcohol (ethanol) administration and the MRS results were confirmed using biochemical total lipid analysis and histology. $\rm T\sb1$ weighted MR images acquired weekly, 48 hours post administration, demonstrated only a slight increase in overall liver intensity with CCl$\sb4$ or alcohol administration, which is consistent with previously reported results. The MR images were able to detect nodules resulting from CCl$\sb4$+PLD induced cirrhosis as hypointense regions, also consistent with previous reports. Localized in vivo water and lipid proton $\rm T\sb1$ relaxation time measurements were performed and demonstrated no statistically significant trends for either agent. In vivo proton spectra were also acquired using stimulated echo techniques to quantitatively follow the changes in liver lipid content. The changes in liver lipid content observed using MRS were verified by total lipid analysis using the Folch technique and histology. The in vivo $\rm T\sb1$ and lipid quantification data str inconsistent with the previous hypothesis that the changes in $\rm T\sb1$ weighted images were the result of increased "free" water content and, therefore, increased water $\rm T\sb1$ relaxation times. These data indicate that the long term changes are more likely the result of changes in lipid content. The data are also shown to agree with the accepted hypothesis that the time course and mechanism of fatty infiltration are different for CCl$\sb4$ and alcohol. The hypothesis that the lipids resulting from either protocol are from the same lipid fraction(s), presumably triglycerides, is also supported. And lastly, on the basis of MR images and quantitative MRS lipid information, it was shown that cirrhosis could be distinguished from fatty infiltration. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To validate use of stress MRI for evaluation of stifle joints of dogs with an intact or deficient cranial cruciate ligament (CrCL). SAMPLE 10 cadaveric stifle joints from 10 dogs. PROCEDURES A custom-made limb-holding device and a pulley system linked to a paw plate were used to apply axial compression across the stifle joint and induce cranial tibial translation with the joint in various degrees of flexion. By use of sagittal proton density-weighted MRI, CrCL-intact and deficient stifle joints were evaluated under conditions of loading stress simulating the tibial compression test or the cranial drawer test. Medial and lateral femorotibial subluxation following CrCL transection measured under a simulated tibial compression test and a cranial drawer test were compared. RESULTS By use of tibial compression test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 9.6 ± 3.7 mm and 10 ± 4.1 mm, respectively. By use of cranial drawer test MRI, the mean ± SD cranial tibial translations in the medial and lateral compartments were 8.3 ± 3.3 mm and 9.5 ± 3.5 mm, respectively. No significant difference in femorotibial subluxation was found between stress MRI techniques. Femorotibial subluxation elicited by use of the cranial drawer test was greater in the lateral than in the medial compartment. CONCLUSIONS AND CLINICAL RELEVANCE Both stress techniques induced stifle joint subluxation following CrCL transection that was measurable by use of MRI, suggesting that both methods may be further evaluated for clinical use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction The aim of this study was to determine which single measurement on post-mortem cardiac MR reflects actual heart weight as measured at autopsy, assess the intra- and inter-observer reliability of MR measurements, derive a formula to predict heart weight from MR measurements and test the accuracy of the formula to prospectively predict heart weight. Materials and methods 53 human cadavers underwent post-mortem cardiac MR and forensic autopsy. In Phase 1, left ventricular area and wall thickness were measured on short axis and four chamber view images of 29 cases. All measurements were correlated to heart weight at autopsy using linear regression analysis. In Phase 2, single left ventricular area measurements on four chamber view images (LVA_4C) from 24 cases were used to predict heart weight at autopsy based on equations derived during Phase 1. Intra-class correlation coefficient (ICC) was used to determine inter- and intra-reader agreement. Results Heart weight strongly correlates with LVA_4C (r=0.78 M; p<0.001). Intra-reader and inter-reader reliability was excellent for LVA_4C (ICC=0.81–0.91; p<0.001 and ICC=0.90; p<0.001 respectively). A simplified formula for heart weight ([g]≈LVA_4C [mm2]×0.11) was derived based on linear regression analysis. Conclusions This study shows that single circumferential area measurements of the left ventricle in the four chamber view on post-mortem cardiac MR reflect actual heart weight as measured at autopsy. These measurements yield an excellent intra- and inter-reader reliability and can be used to predict heart weight prior to autopsy or to give a reasonable estimate of heart weight in cases where autopsy is not performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose—The question whether cerebral microbleeds (CMBs) visible on MRI in acute stroke increase the risk for intracerebral hemorrhages (ICHs) or worse outcome after thrombolysis is unresolved. The aim of this study was to analyze the impact of CMB detected with pretreatment susceptibility-weighted MRI on ICH occurrence and outcome. Methods—From 2010 to 2013 we treated 724 patients with intravenous thrombolysis, endovascular therapy, or intravenous thrombolysis followed by endovascular therapy. A total of 392 of the 724 patients were examined with susceptibility-weighted MRI before treatment. CMBs were rated retrospectively. Multivariable regression analysis was used to determine the impact of CMB on ICH and outcome. Results—Of 392 patients, 174 were treated with intravenous thrombolysis, 150 with endovascular therapy, and 68 with intravenous thrombolysis followed by endovascular therapy. CMBs were detected in 79 (20.2%) patients. Symptomatic ICH occurred in 21 (5.4%) and asymptomatic in 75 (19.1%) patients, thereof 61 (15.6%) bleedings within and 35 (8.9%) outside the infarct. Neither the existence of CMB, their burden, predominant location nor their presumed pathogenesis influenced the risk for symptomatic or asymptomatic ICH. A higher CMB burden marginally increased the risk for ICH outside the infarct (P=0.048; odds ratio, 1.004; 95% confidence interval, 1.000–1.008). Conclusions—CMB detected on pretreatment susceptibility-weighted MRI did not increase the risk for ICH or worsen outcome, even when CMB burden, predominant location, or presumed pathogenesis was considered. There was only a small increased risk for ICH outside the infarct with increasing CMB burden that does not advise against thrombolysis in such patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BackgroundAnatomical differences between humans and domestic mammals preclude the use of reported stereotactic approaches to the brainstem in animals. In animals, brainstem biopsies are required both for histopathological diagnosis of neurological disorders and for research purposes. Sheep are used as a translational model for various types of brain disease and therefore a species-specific approach needs to be developed. The aim of the present study was to establish a minimally invasive, accurate and reproducible stereotactic approach to the brainstem of sheep, using the magnetic resonance imaging guided BrainsightTM frameless stereotactic system.ResultsA transoccipital transcerebellar approach with an entry point in the occipital bone above the vermis between the transverse sinus and the external occipital protuberance was chosen. This approach provided access to the target site in all heads. The overall mean needle placement error was 1.85¿±¿1.22 mm.ConclusionsThe developed transoccipital transcerebellar route is short, provides accurate access to the ovine caudal cranial fossa and is a promising approach to be assessed further in live animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postmortem MRI (PMMR) examinations are seldom performed in legal medicine due to long examination times, unfamiliarity with the technique, and high costs. Furthermore, it is difficult to obtain access to an MRI device used for patients in clinical settings to image an entire human body. An alternative is available: ex situ organ examination. To our knowledge, there is no standardized protocol that includes ex situ organ preparation and scanning parameters for postmortem MRI. Thus, our objective was to develop a standard procedure for ex situ heart PMMR examinations. We also tested the oily contrast agent Angiofil® commonly used for PMCT angiography, for its applicability in MRI. We worked with a 3 Tesla MRI device and 32-channel head coils. Twelve porcine hearts were used to test different materials to find the best way to prepare and place organs in the device and to test scanning parameters. For coronary MR angiography, we tested different mixtures of Angiofil® and different injection materials. In a second step, 17 human hearts were examined to test the procedure and its applicability to human organs. We established two standardized protocols: one for preparation of the heart and another for scanning parameters based on experience in clinical practice. The established protocols enabled a standardized technical procedure with comparable radiological images, allowing for easy radiological reading. The performance of coronary MR angiography enabled detailed coronary assessment and revealed the utility of Angiofil® as a contrast agent for PMMR. Our simple, reproducible method for performing heart examinations ex situ yields high quality images and visualization of the coronary arteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to describe magnetic resonance imaging (MRI) findings associated with presumed elevated intracranial pressure (ICP) in dogs and to evaluate whether MRI could be used to discriminate between dogs with and without elevated ICP. Of 91 dogs that underwent cranial MRI examination, 18 (19.8%) were diagnosed with elevated ICP based on neurological examination, fundoscopy and transcranial Doppler ultrasonography. The MRI findings that showed the strongest association with elevated ICP were mass effect (odds ratio [OR], 78.5), caudal transtentorial herniation (OR, 72.0), subfalcine herniation (OR, 45.6), perilesional oedema (OR, 34.0), displacement of the lamina quadrigemina (OR, 27.7) and effacement of the cerebral sulci (OR, 27.1). The presence of any two or more of the following MRI findings identified elevated ICP with a sensitivity of 72% and a specificity of 96%: compression of the suprapineal recess, compression of the third ventricle, compression of the fourth ventricle, effacement of the cerebral sulci and caudal transposition of the lamina quadrigemina. In conclusion, there is an association between MRI findings and elevated ICP in dogs; therefore, MRI might be useful to discriminate between dogs with and without elevated ICP.