937 resultados para Nonlinear mixed effects models
Resumo:
The widespread plant volatile beta-caryophyllene (BCP) was recently identified as a natural selective agonist of the peripherally expressed cannabinoid receptor 2 (CB2). It is found in relatively high concentrations in many spices and food plants. A number of studies have shown that CB2 is critically involved in the modulation of inflammatory and neuropathic pain responses. In this study, we have investigated the analgesic effects of BCP in animal models of inflammatory and neuropathic pain. We demonstrate that orally administered BCP reduced inflammatory (late phase) pain responses in the formalin test in a CB2 receptor-dependent manner, while it had no effect on acute (early phase) responses. In a neuropathic pain model the chronic oral administration of BCP attenuated thermal hyperalgesia and mechanical allodynia, and reduced spinal neuroinflammation. Importantly, we found no signs of tolerance to the anti-hyperalgesic effects of BCP after prolonged treatment. Oral BCP was more effective than the subcutaneously injected synthetic CB2 agonist JWH-133. Thus, the natural plant product BCP may be highly effective in the treatment of long lasting, debilitating pain states. Our results have important implications for the role of dietary factors in the development and modulation of chronic pain conditions.
Resumo:
In this study, mice were vaccinated intranasally with recombinant N. caninum protein disulphide isomerase (NcPDI) emulsified in cholera toxin (CT) or cholera toxin subunit B (CTB) from Vibrio cholerae. The effects of vaccination were assessed in the murine nonpregnant model and the foetal infection model, respectively. In the nonpregnant mice, previous results were confirmed, in that intranasal vaccination with recNcPDI in CT was highly protective, and low cerebral parasite loads were noted upon real-time PCR analysis. Protection was accompanied by an IgG1-biased anti-NcPDI response upon infection and significantly increased expression of Th2 (IL-4/IL-10) and IL-17 transcripts in spleen compared with corresponding values in mice treated with CT only. However, vaccination with recNcPDI in CT did not induce significant protection in dams and their offspring. In the dams, increased splenic Th1 (IFN-γ/IL-12) and Th17 mRNA expressions was detected. No protection was noted in the groups vaccinated with recNcPDI emulsified in CTB. Thus, vaccination with recNcPDI in CT in nonpregnant mice followed by challenge infection induced a protective Th2-biased immune response, while in the pregnant mouse model, the same vaccine formulation resulted in a Th1-biased inflammatory response and failed to protect dams and their progeny.
Resumo:
Objective: To determine how a clinician’s background knowledge, their tasks, and displays of information interact to affect the clinician’s mental model. Design: Repeated Measure Nested Experimental Design Population, Sample, Setting: Populations were gastrointestinal/internal medicine physicians and nurses within the greater Houston area. A purposeful sample of 24 physicians and 24 nurses were studied in 2003. Methods: Subjects were randomized to two different displays of two different mock medical records; one that contained highlighted patient information and one that contained non-highlighted patient information. They were asked to read and summarize their understanding of the patients aloud. Propositional analysis was used to understand their comprehension of the patients. Findings: Different mental models were found between physicians and nurses given the same display of information. The information they shared was very minor compared to the variance in their mental models. There was additionally more variance within the nursing mental models than the physician mental models given different displays of the same information. Statistically, there was no interaction effect between the display of information and clinician type. Only clinician type could account for the differences in the clinician comprehension and thus their mental models of the cases. Conclusion: The factors that may explain the variance within and between the clinician models are clinician type, and only in the nursing group, the use of highlighting.
Resumo:
Tables of estimated regression coefficients, usually accompanied by additional information such as standard errors, t-statistics, p-values, confidence intervals or significance stars, have long been the preferred way of communicating results from statistical models. In recent years, however, the limits of this form of exposition have been increasingly recognized. For example, interpretation of regression tables can be very challenging in the presence of complications such as interaction effects, categorical variables, or nonlinear functional forms. Furthermore, while these issues might still be manageable in the case of linear regression, interpretational difficulties can be overwhelming in nonlinear models such as logistic regression. To facilitate sensible interpretation of such models it is often necessary to compute additional results such as marginal effects, predictive margins, or contrasts. Moreover, smart graphical displays of results can be very valuable in making complex relations accessible. A number of helpful commands geared at supporting these tasks have been recently introduced in Stata, making elaborate interpretation and communication of regression results possible without much extra effort. Examples of such commands are -margins-, -contrasts-, and -marginsplot-. In my talk, I will discuss the capabilities of these commands and present a range of examples illustrating their use.
Resumo:
Stata is a general purpose software package that has become popular among various disciplines such as epidemiology, economics, or social sciences. Users like Stata for its scientific approach, its robustness and reliability, and the ease with which its functionality can be extended by user written programs. In this talk I will first give a brief overview of the functionality of Stata and then discuss two specific features: survey estimation and predictive margins/marginal effects. Most surveys are based on complex samples that contain multiple sampling stages, are stratified or clustered, and feature unequal selection probabilities. Standard estimators can produce misleading results in such samples unless the peculiarities of the sampling plan are taken into account. Stata offers survey statistics for complex samples for a wide variety of estimators and supports several variance estimation procedures such as linearization, jackknife, and balanced repeated replication (see Kreuter and Valliant, 2007, Stata Journal 7: 1-21). In the talk I will illustrate these features using applied examples and I will also show how user written commands can be adapted to support complex samples. Complex can also be the models we fit to our data, making it difficult to interpret them, especially in case of nonlinear or non-additive models (Mood, 2010, European Sociological Review 26: 67-82). Stata provides a number of highly useful commands to make results of such models accessible by computing and displaying predictive margins and marginal effects. In my talk I will discuss these commands provide various examples demonstrating their use.
Resumo:
Results from the Zurich study have shown lasting associations between sport practice and mental health. The effects are pronounced in people with pre-exising mental health problems. This analysis aims to replicate these results with the large Swiss Household Panel data set and to provide more differentiated results. The analysis covered the interviews 1999-2003 and included 3891 stayers, i.e., participants who were interviewed in all years. The outcome variables are depression / blues / anxiety, weakness / weariness, sleeping problems, energy / optimism. Confounding variables include sex, age, education level, citizenship. The analyses were carried out with mixed models (depression, optimism) and GEE models (weakness, sleep). About 60% of the SHP participants practise weekly or daily an individual or a team sport. A similar proportion enjoys a frequent physical activity (for half an hour minimum) which makes oneself slightly breathless. There are slight age-specific differences but also noteworthy regional differences. Practice of sport is clearly interrelated with self-reported depressive symptoms, optimism and weakness. This applies even though some relevant confounders – sex, educational level and citizenship – were introduced into the model. However, no relevant interaction effects with time could be shown. Moreover, direct interrelations commonly led to better fits than models with lagged variables, thus indicating that delayed effects of sport practice on the self-reported psychological complaints are less important. Model variants resulted for specific subgroups, for example, participants with a high vs. low initial activity level. Lack of sport practice is an interesting marker for serious psychological symptoms and mental disorders. The background of this association may differ in different subgroups, and should stimulate further investigations in this area.
Resumo:
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone's material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of thirteen femora predicted the strength (R2=0.84, SEE=540 N, 16.2%), stiffness (R2=0.82, SEE=233 N/mm, 18.0%) and fracture energy (R2=0.72, SEE=3.85 J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation.
Resumo:
The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^
Resumo:
Pregnant Sprague-Dawley rats were gavaged with vehicle (olive oil) or 37.5, 75, 150 or 300 mg/kg of (DELTA)('9)-Tetrahydrocannabinol (THC) on days 18 or 19 of gestation. Male offspring as well as a group of hypophysectomized rats (positive control) were sacrificed at 35 days of age, while females and hypophysectomized control were sacrificed at 36 days of age. The sex-differences in ethylmorphine-N-demethylase and aniline hydroxylase liver activities were evaluated.^ Ethylmorphine-N-demethylase activity showed a significant difference between males and females from control and 37.5, 75 and 150 mg/kg THC dosed groups. Female offspring exposed prenatally to 300 mg/kg THC had a significant increase (p < .01) in N-demethylation activity, while their male counterparts had similar enzyme activity to those found in the male groups from control and 37.5 to 150 mg/kg THC dosed. Moreover, the percent increase in the 300 mg/kg THC dosed females was similar to that detected in the hypophysectomized female rats (positive control). As expected no sex difference in aniline hydroxylase activity was detected in control as well as exposed groups, including the 300 mg/kg THC dosed group.^ It is concluded that (DELTA)('9)-Tetrahydrocannabinol administered once by gavage in days 18 or 19 of gestation alters the liver Mixed Function Oxidase (MFO) sexual dimorphism imprinting process of the rat. ^
Resumo:
The performance of the Hosmer-Lemeshow global goodness-of-fit statistic for logistic regression models was explored in a wide variety of conditions not previously fully investigated. Computer simulations, each consisting of 500 regression models, were run to assess the statistic in 23 different situations. The items which varied among the situations included the number of observations used in each regression, the number of covariates, the degree of dependence among the covariates, the combinations of continuous and discrete variables, and the generation of the values of the dependent variable for model fit or lack of fit.^ The study found that the $\rm\ C$g* statistic was adequate in tests of significance for most situations. However, when testing data which deviate from a logistic model, the statistic has low power to detect such deviation. Although grouping of the estimated probabilities into quantiles from 8 to 30 was studied, the deciles of risk approach was generally sufficient. Subdividing the estimated probabilities into more than 10 quantiles when there are many covariates in the model is not necessary, despite theoretical reasons which suggest otherwise. Because it does not follow a X$\sp2$ distribution, the statistic is not recommended for use in models containing only categorical variables with a limited number of covariate patterns.^ The statistic performed adequately when there were at least 10 observations per quantile. Large numbers of observations per quantile did not lead to incorrect conclusions that the model did not fit the data when it actually did. However, the statistic failed to detect lack of fit when it existed and should be supplemented with further tests for the influence of individual observations. Careful examination of the parameter estimates is also essential since the statistic did not perform as desired when there was moderate to severe collinearity among covariates.^ Two methods studied for handling tied values of the estimated probabilities made only a slight difference in conclusions about model fit. Neither method split observations with identical probabilities into different quantiles. Approaches which create equal size groups by separating ties should be avoided. ^
Resumo:
The consideration of real operating conditions for the design and optimization of a multijunction solar cell receiver-concentrator assembly is indispensable. Such a requirement involves the need for suitable modeling and simulation tools in order to complement the experimental work and circumvent its well-known burdens and restrictions. Three-dimensional distributed models have been demonstrated in the past to be a powerful choice for the analysis of distributed phenomena in single- and dual-junction solar cells, as well as for the design of strategies to minimize the solar cell losses when operating under high concentrations. In this paper, we present the application of these models for the analysis of triple-junction solar cells under real operating conditions. The impact of different chromatic aberration profiles on the short-circuit current of triple-junction solar cells is analyzed in detail using the developed distributed model. Current spreading conditions the impact of a given chromatic aberration profile on the solar cell I-V curve. The focus is put on determining the role of current spreading in the connection between photocurrent profile, subcell voltage and current, and semiconductor layers sheet resistance.
Resumo:
The authors are from UPM and are relatively grouped, and all have intervened in different academic or real cases on the subject, at different times as being of different age. With precedent from E. Torroja and A. Páez in Madrid Spain Safety Probabilistic models for concrete about 1957, now in ICOSSAR conferences, author J.M. Antón involved since autumn 1967 for euro-steel construction in CECM produced a math model for independent load superposition reductions, and using it a load coefficient pattern for codes in Rome Feb. 1969, practically adopted for European constructions, giving in JCSS Lisbon Feb. 1974 suggestion of union for concrete-steel-al.. That model uses model for loads like Gumbel type I, for 50 years for one type of load, reduced to 1 year to be added to other independent loads, the sum set in Gumbel theories to 50 years return period, there are parallel models. A complete reliability system was produced, including non linear effects as from buckling, phenomena considered somehow in actual Construction Eurocodes produced from Model Codes. The system was considered by author in CEB in presence of Hydraulic effects from rivers, floods, sea, in reference with actual practice. When redacting a Road Drainage Norm in MOPU Spain an optimization model was realized by authors giving a way to determine the figure of Return Period, 10 to 50 years, for the cases of hydraulic flows to be considered in road drainage. Satisfactory examples were a stream in SE of Spain with Gumbel Type I model and a paper of Ven Te Chow with Mississippi in Keokuk using Gumbel type II, and the model can be modernized with more varied extreme laws. In fact in the MOPU drainage norm the redacting commission acted also as expert to set a table of return periods for elements of road drainage, in fact as a multi-criteria complex decision system. These precedent ideas were used e.g. in wide Codes, indicated in symposia or meetings, but not published in journals in English, and a condensate of contributions of authors is presented. The authors are somehow involved in optimization for hydraulic and agro planning, and give modest hints of intended applications in presence of agro and environment planning as a selection of the criteria and utility functions involved in bayesian, multi-criteria or mixed decision systems. Modest consideration is made of changing in climate, and on the production and commercial systems, and on others as social and financial.