974 resultados para Ni(II) complexes,


Relevância:

40.00% 40.00%

Publicador:

Resumo:

New Pd(II), Pt(II) and Re(V) complexes of 3-aminosalicylic acid (H(2)salNH(2)) and 3-hydroxyantranilic acid (HantOH) have been prepared, cis-[Pt (HsalNH)(PPh3)(2)] center dot 0.25C(2)H(5)OH (1), trans-[PdCl(salNH(2))(PPh3)(2)](2), trans-[ReOI2(HsalNH(2))(PPh3)] center dot (CH3)(2)CO (3), cis-[Pt(HantO)(PPh3)(2)] (4), trans-[PdCl(antOH)(PPh3)(2)] center dot 4H(2)O (5), [PdCl(antOH)(bipy)] center dot C2H5OH (6), [PdCl2(HantOH)(2)] (7) and trans-[ReOI(HantO)(PPh3)(2)] center dot (CH3)(2)CO (8). The crystal structure of complex I was determined showing chelation of HsalNH(2-) through the adjacent nitrogen and oxygen atoms of the amino and phenolate groups. Infrared and H-1 NMR spectroscopic data for the complexes are presented. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)(2) . 6H(2)O with N,N-bis(2-pyridylmethyl)amine (L-1); N-(2-pyridylmethyl)-N',N'-dimethylethylenediamine (L-2); and N-(2-pyridylmethyl)-N',N'-diethylethylenediamine (L-3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L-1)(N-3)(ClO4) (1), the end-to-end diazido-bridged Cu-2(L-2)(2)(mu-1,3-N-3)(2)(ClO4)(2) (2) and the single azido-bridged (mu-1,3-) 1D chain [Cu(L-3)(mu-1,3-N-3)](n)(ClO4)(n) (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = -3.43 cm(-1) and R = 1 X 10(-5). The magnetic data for 3 were fitted to Baker's expression for S = 1/2 and the parameters obtained were J = 1.6 cm(-1) and R = 3.2 x 10(-4). Crystal data are as follows. Cu(L-1)(N-3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Angstrom; beta = 102.960(10)degrees; Z = 4. Cu(L-2)(mu-N-3)(ClO4): Chemical formula. C10H17ClN6O4Cu: crystal system, monoclinic; space group, P2(1)/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Angstrom; beta = 102.360(10)degrees; Z = 4. [Cu(L-3)(mu-N-3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P2(1)/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Angstrom; beta = 103.405(10)degrees; Z = 4. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two mixed bridged one-dimensional (1D) polynuclear complexes, [Cu3L2(mu(1,1)-N-3)(2)(mu-Cl)Cl](n) (1) and {[Cu3L2(mu-Cl)(3)Cl]center dot 0.46CH(3)OH}(n), (2), have been synthesized using the tridentate reduced Schiff-base ligand HL (2-[(2-dimethylamino-ethylamino)-methyl]-phenol). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. In both complexes the basic trinuclear angular units are joined together by weak chloro bridges to form a 1D chain. The trinuclear structure of 1 is composed of two terminal square planar [Cu(L)(mu(1,1)-N-3)] units connected by a central Cu(II) atom through bridging nitrogen atoms of end-on azido ligands and the phenoxo oxygen atom of the tridentate ligand. These four coordinating atoms along with a chloride ion form a distorted trigonal bipyramidal geometry around the central Cu(II). The structure of 2 is similar; the only difference being a Cl bridge replacing the mu(1,1)-N-3 bridge in the trinuclear unit. The magnetic properties of both trinuclear complexes can be very well reproduced with a simple linear symmetrical trimer model (H = JS(i)S(i+1)) with only one intracluster exchange coupling (J) including a weak intertrimer interaction (.j) reproduced with the molecular field approximation. This model provides very satisfactory fits for both complexes in the whole temperature range with the following parameters: g = 2.136(3), J = 93.9(3) cm(-1) and zj= -0.90(3) cm(-1) (z = 2) for 1 and g = 2.073(7), J = -44.9(4) cm(-1) and zJ = -1.26(6) cm(-1) (z = 2) for 2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four new Cu(II)-azido complexes of formula [CuL(N-3)] (1), [CuL(N-3)](2) (2), [Cu7L2(N-3)(12)](n) (3), and [Cu2L(dmen)-(N-3)(3)](n) (4) (dmen = N,N-dimethylethylenediamine) have been synthesized using the same tridentate Schiff base ligand HL (2-[1-(2-dimethylaminoethylimino)ethyl]phenol, the condensation product of dmen and 2-hydroxyacetophenone). The four compounds have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. Complex 1 is mononuclear, whereas 2 is a single mu-1,1 azido-bridged dinuclear compound. The polymeric compound 3 possesses a 2D structure in which the Cu(II) ions are linked by phenoxo oxygen atoms and two different azide bridges (mu-1,1 and mu-1,1,3). The structure of complex 4 is a double helix in which two mu-1,3-azido-bridged alternating one-dimensional helical chains of CuL(N-3) and Cu(dmen)(N-3)(2) are joined together by weak mu-1,1 azido bridges and H-bonds. The complexes interconvert in solution and can be obtained in pure form by carefully controlling the conditions. The magnetic properties of compounds 1 and 2 show the presence of very weak antiferromagnetic exchange interactions mediated by a ligand pi overlap (J = -1.77) and by an asymmetric 1,1-N-3 bridge (J = -1.97 cm(-1)), respectively. Compound 3 presents, from the magnetic point of view, a decorated chain structure with both ferro- and antiferromagnetic interactions. Compound 4 is an alternating helicoidal chain with two weak antiferromagnetic exchange interactions (J -1.35 and -2.64 cm(-1)).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The synthesis of a range of dinuclear Cu(II) dithiocarbamate (dtc)-based macrocycles and their characterisation are described. By carefully tuning the size of the aromatic spacer, cavities of different dimensions can be designed. The length and flexibility of the chosen spacer group dictates the intermetallic distance and hence the degree of communication between the two metal centres as evidenced by electrochemical and EPR experiments. This is illustrated by crystallographic evidence that show the macrocycles can host guests (such as CH2Cl2) or can fold and form unexpected Cu(I) dtc clusters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Phenylphosphinic acid (HPhPO2H) and phenylphosphonic acid (PhPO3H2) react with a methanolic solution of [Ru2(μ-O2CCH3)4(O2CCH3)2]H·0.7H2O at room temperature to give [Ru2(μ-O2CCH3)4(HPhPO2)2H (1) and [Ru2(μ-O2CCH3)4 (PhPO3H)2]H·H2O (2), respectively. The X-ray crystal structures of 1 and 2 each show the RuRu core to be ligated by four bridging bidentate acetate ligands [RuRu distances: 1 = 2.272(1) Å; 2 = 2.267(2) Å] and two axial phenylphosphinate and phenylphosphonate ligands, respectively. In each complex the individual bimetallic molecules are linked together by a hydrogen ion which bridges the oxygen atoms of neighbouring axial ligands. In 2 the water molecule is also hydrogen-bonded to one of the axial phenylphosphonate groups. Spectroscopic, magnetic and cyclic voltammetric data for the complexes are given.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[Ru2(μ-O2CCH3)4Cl] reacts readily with aqueous Ag2SO4 (2: 1 molar ratio) to give the sulphate salt [Ru2(μ-O2CCH3)4(H2O)2]2(SO4) (1). Addition of NaBPh4 to an aqueous solution of 1 produces the ether-soluble tetraphenylborate salt [Ru2(μ-O2CCH3)4(H2O)2][BPh4] (2). A methanolic solution of 1 reacts with Ba(C6H5CCCO2)2 · H2O to give the tetraacetatemonophenylpropynoate complex [Ru2(μ-O2CCH3)4(O2CCCC6H5)] · H2O (3). The reaction of an ethanolic suspension of [Ru2(μ-O2CC6H5)4Cl] with Ag2SO4 and H2SO4 (2 : 1 : 1 molar ratio) leads to the tetra-μ-benzoatodiruthenium(II,III) double complex salt [Ru2(μ-O2CC6H5)4(C2H5OH)2][Ru2(μ-O2CC6H5)4(HSO4)2] (4). Complex 4 is also obtained by reacting an ethanolic solution of 1 with an excess of benzoic acid in the presence of H2SO4. The X-ray crystal structure of 4 shows it to consist of [Ru2(μ-O2CC6H5)4(C2H5OH)2]+ and [Ru2(μ-O2CC6H5)4(HSO4)2]− ions, which are linked together by hydrogen bonds into an infinite polymeric chain. The RuRu distances in the cation and anion are very similar [2.265(2) and 2.272(2) Å, respectively]. Spectroscopic, magnetic, conductivity and cyclic voltammetry data are given for the complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular structure of trans-[PtCl(CHCH2)(PEt2Ph)2] has been determined by X-ray diffraction methods. The crystals are orthorhombic, space group Pbcn, with a= 10.686(2), b= 13.832(4), c= 16.129(4)Å, and Z= 4. The structure has been solved by the heavy-atom method and refined by full-matrix least squares to R 0.044 for 1 420 diffractometric intensity data. The crystals contain discrete molecules in which the platinum co-ordination is square planar. The Pt–Cl bond vector coincides with a crystallographic diad axis about which the atoms of the vinyl group are disordered. Selected bond lengths (Å) are Pt–Cl 2.398(4), Pt–P 2.295(3), and Pt–C 2.03(2). The Pt–CC angle is 127(2)°. From a survey of the available structural data it is concluded that there is little, if any, back donation from platinum to carbon in platinum–alkenyl linkages.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The two air-stable manganese(II) salicylate complexes [Mn2(Hsal)4(H2O)4]1 and polymeric [{Mn2(sal)2(Hsal)(H2O)(H3O)(py)4·2py}n]2(H2sal = salicylic acid and py = pyridine) have been synthesised easily, and their crystal structures determined. Both contain unsymmetrically bridging salicylate ligands. In the presence of added pyridine 1 and 2 vigorously catalyse the disproportionation of H2O2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three new zinc(II)-hexamethylenetetramine (hmt) complexes [Zn-2(4-nbz)(4)(mu(2)-hmt)(OH2)(hmt)] (1). [Zn-2(2-nbz)(4)(mu(2)-hmt)(2)](n) (2) and [Zn-3(3-nbz)(4)(mu(2)-hmt)(mu(2)-OH)(mu(3)-OH)](n) (3) with three isomeric nitrobenzoate, [4-nbz = 4-nitrobenzoate, 2-nbz = 2-nitrobenzoate and 3-nbz = 3-nitrobenzoate] have been synthesized and structurally characterized by X-ray crystallography. Their identities have also been established by elemental analysis: IR, NMR, UV-Vis and mass spectral studies. 1 is a dinuclear complex formed by bridging hmt with mu(2) coordinating mode. The geometry around the Zn centers in 1 is distorted tetrahedral. Paddle-wheel centrosymmetric Zn-2(2-nbz)(4) units of complex 2 are interconnected by mu(2)-hmt forming a one-dimensional chain with square-pyramidal geometries around the Zn centers. Compound 3 contains a mu(2)/mu(3)-hydroxido and mu(2)-hmt bridged 1D chain. In this complex, varied geometries around the Zn centers are observed viz, tetrahedral, square pyramidal and trigonal bipyramidal. Various weak forces, i.e. lone pair-pi, pi-pi and CH-pi interactions, play a key role in stabilizing the observed structures for complexes 1,2 and 3. This series of complexes demonstrates that although the nitro group does not coordinate to the metal center, its presence at the 2-, 3- or 4-position of the phenyl ring has a striking effect on the dimensionality as well as the structure of the resulted coordination polymers, probably due to the participation of the nitro group in 1.p.center dot center dot center dot pi and/or C-H center dot center dot center dot pi interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Facile in situ Cu(II) mediated transformation of p-tolylsulfonyldithiocarbimate in conjunction with polypyridyl or phosphine ligands into corresponding carbamate and thiocarbamate led to the formation of new copper complexes with varying nuclearities and geometries, via C-S bond activation of the ligand within identical reaction systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reaction of 5,6-dihydro-5,6-epoxy-1,10-phenanthroline (L) with Cu(ClO(4))(2)center dot 6H(2)O in methanol in 3:1 M ratio at room temperature yields light green [CuL(3)](ClO(4))(2)center dot H(2)O (1). The X-ray crystal structure of the hemi acetonitrile solvate [CuL(3)](ClO(4))(2)center dot 0.5CH(3)CN has been determined which shows Jahn-Teller distortion in the CuN(6) core present in the cation [CuL(3)](2+). Complex 1 gives an axial EPR spectrum in acetonitrile-toluene glass with g(parallel to) = 2.262 (A(parallel to) = 169 x 10 (4) cm (1)) and g(perpendicular to) = 2.069. The Cu(II/I) potential in 1 in CH(2)Cl(2) at a glassy carbon electrode is 0.32 V versus NHE. This potential does not change with the addition of extra L in the medium implicating generation of a six-coordinate copper(I) species [CuL(3)](+) in solution. B3LYP/LanL2DZ calculations show that the six Cu-N bond distances in [CuL(3)](+) are 2.33, 2.25, 2.32, 2.25, 2.28 and 2.25 angstrom while the ideal Cu(I)-N bond length in a symmetric Cu(I)N(6) moiety is estimated as 2.25 angstrom. Reaction of L with Cu(CH(3)CN)(4)ClO(4) in dehydrated methanol at room temperature even in 4:1 M proportion yields [CuL(2)]ClO(4) (2). Its (1)H NMR spectrum indicates that the metal in [CuL(2)](+) is tetrahedral. The Cu(II/I) potential in 2 is found to be 0.68 V versus NHE in CH(2)Cl(2) at a glassy carbon electrode. In presence of excess L, 2 yields the cyclic voltammogram of 1. From (1)H NMR titration, the free energy of binding of L to [CuL(2)](+) to produce [CuL(3)](+) in CD(2)Cl(2) at 298 K is estimated as -11.7 (+/-0.2) kJ mol (1).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An uncommon coordination protocol induced by the p-tolylsulfonyl dithiocarbimate ligand (L) [L = p-CH(3)C(6)H(4)SO(2)N CS(2)(2-)] in conjunction with PPh(3) allowed the formation of novel homodimetallic, Cu(2)(PPh(3))(4)L (1), trinuclear heterometallic Cu(2)Ni(L)(2)(PPh(3))(4) (2) and heteroleptic complexes of general formula cis-[M(PPh(3))(2)L] [M = Pd(II) (3), Pt(II) (4)]. The complexes have been characterized by microanalysis, mass spectrometry, IR, (1)H, (13)C and (31)P NMR and electronic absorption spectra and single-crystal X-ray crystallography. 2 uniquely consists of square planar, trigonal planar and tetrahedral coordination spheres within the same molecule. In both heteroleptic complexes 3 and 4 the orientation of aromatic protons of PPh(3) ligand towards the Pd(II) and Pt(II) center reveals C-H center dot center dot center dot Pd and C-H center dot center dot center dot Pt rare intramolecular anagostic or preagostic interactions. These complexes exhibit photoluminescent properties in solution at room temperature arising mainly from intraligand charge transfer (ILCT) transitions. The assignment of electronic absorption bands has been corroborated by time dependent density functional theory (TD-DFT) calculations. Complexes 1 and 2 with sigma(rt) values similar to 10(-6) S cm(-1) show semi-conductor properties in the temperature range 313-403 K whereas 3 and 4 exhibit insulating behaviour.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bis(o-hydroxyacetophenone)nickel(II) dihydrate, on reaction with 1,3-pentanediamine, yields a bis-chelate complex [NiL2]·2H2O (1) of mono-condensed tridentate Schiff baseligand HL {2-[1-(3-aminopentylimino)ethyl]phenol}. The Schiff base has been freed from the complex by precipitating the NiII as a dimethylglyoximato complex. HL reacts smoothly with Ni(SCN)2·4H2O furnishing the complex [NiL(NCS)] (2) and with CuCl2·2H2O in the presence of NaN3 or NH4SCN producing [CuL(N3)]2 (3) or [CuL(NCS)] (4). On the other hand, upon reaction with Cu(ClO4)2·6H2O and Cu(NO3)2·3H2O, the Schiff base undergoes hydrolysis to yield ternary complexes [Cu(hap)(pn)(H2O)]ClO4 (5) and [Cu(hap)(pn)(H2O)]NO3 (6), respectively (Hhap = o-hydroxyacetophenone and pn = 1,3-pentanediamine). The ligand HL undergoes hydrolysis also on reaction with Ni(ClO4)2·6H2O or Ni(NO3)2·6H2O to yield [Ni(hap)2] (7). The structures of the complexes 2, 3, 5, 6, and 7 have been confirmed by single-crystal X-ray analysis. In complex 2, NiII possesses square-planar geometry, being coordinated by the tridentate mono-negative Schiff base, L and the isothiocyanate group. The coordination environment around CuII in complex 3 is very similar to that in complex 2 but here two units are joined together by end-on, axial-equatorial azide bridges to result in a dimer in which the geometry around CuII is square pyramidal. In both 5 and 6, the CuII atoms display the square-pyramidal environment; the equatorial sites being coordinated by the two amine groups of 1,3-pentanediamine and two oxygen atoms of o-hydroxyacetophenone. The axial site is coordinated by a water molecule. Complex 7 is a square-planar complex with the Ni atom bonded to four oxygen atoms from two hap moieties. The mononuclear units of 2 and dinuclear units of 3 are linked by strong hydrogen bonds to form a one-dimensional network. The mononuclear units of 5 and 6 are joined together to form a dimer by very strong hydrogen bonds through the coordinated water molecule. These dimers are further involved in hydrogen bonding with the respective counteranions to form 2-D net-like open frameworks.