927 resultados para Networks on chip (NoC)
Resumo:
This dissertation consists of three standalone articles that contribute to the economics literature concerning technology adoption, information diffusion, and network economics in one way or another, using a couple of primary data sources from Ethiopia. The first empirical paper identifies the main behavioral factors affecting the adoption of brand new (radical) and upgraded (incremental) bioenergy innovations in Ethiopia. The results highlight the importance of targeting different instruments to increase the adoption rate of the two types of innovations. The second and the third empirical papers of this thesis, use primary data collected from 3,693 high school students in Ethiopia, and shed light on how we should select informants to effectively and equitably disseminate new information, mainly concerning environmental issues. There are different well-recognized standard centrality measures that are used to select informants. These standard centrality measures, however, are based on the network topology---shaped only by the number of connections---and fail to incorporate the intrinsic motivations of the informants. This thesis introduces an augmented centrality measure (ACM) by modifying the eigenvector centrality measure through weighting the adjacency matrix with the altruism levels of connected nodes. The results from the two papers suggest that targeting informants based on network position and behavioral attributes ensures more effective and equitable (gender perspective) transmission of information in social networks than selecting informants on network centrality measures alone. Notably, when the information is concerned with environmental issues.
Resumo:
Much of the real-world dataset, including textual data, can be represented using graph structures. The use of graphs to represent textual data has many advantages, mainly related to maintaining a more significant amount of information, such as the relationships between words and their types. In recent years, many neural network architectures have been proposed to deal with tasks on graphs. Many of them consider only node features, ignoring or not giving the proper relevance to relationships between them. However, in many node classification tasks, they play a fundamental role. This thesis aims to analyze the main GNNs, evaluate their advantages and disadvantages, propose an innovative solution considered as an extension of GAT, and apply them to a case study in the biomedical field. We propose the reference GNNs, implemented with methodologies later analyzed, and then applied to a question answering system in the biomedical field as a replacement for the pre-existing GNN. We attempt to obtain better results by using models that can accept as input both node and edge features. As shown later, our proposed models can beat the original solution and define the state-of-the-art for the task under analysis.
Resumo:
There are only a few insights concerning the influence that agronomic and management variability may have on superficial scald (SS) in pears. Abate Fétel pears were picked during three seasons (2018, 2019 and 2020) from thirty commercial orchards in the Emilia Romagna region, Italy. Using a multivariate statistical approach, high heterogeneity between farms for SS development after cold storage with regular atmosphere was demonstrated. Indeed, some factors seem to affect SS in all growing seasons: high yields, soil texture, improper irrigation and Nitrogen management, use of plant growth regulators, late harvest, precipitations, Calcium and cow manure, presence of nets, orchard age, training system and rootstock. Afterwards, we explored the spatio/temporal variability of fruit attributes in two pear orchards. Environmental and physiological spatial variables were recorded by a portable RTK GPS. High spatial variability of the SS index was observed. Through a geostatistical approach, some characteristics, including soil electrical conductivity and fruit size, have been shown to be negatively correlated with SS. Moreover, regression tree analyses were applied suggesting the presence of threshold values of antioxidant capacity, total phenolic content, and acidity against SS. High pulp firmness and IAD values before storage, denoting a more immature fruit, appeared to be correlated with low SS. Finally, a convolution neural networks (CNN) was tested to detect SS and the starch pattern index (SPI) in pears for portable device applications. Preliminary statistics showed that the model for SS had low accuracy but good precision, and the CNN for SPI denoted good performances compared to the Ctifl and Laimburg scales. The major conclusion is that Abate Fétel pears can potentially be stored in different cold rooms, according to their origin and quality features, ensuring the best fruit quality for the final consumers. These results might lead to a substantial improvement in the Italian pear industry.
Resumo:
The Structural Health Monitoring (SHM) research area is increasingly investigated due to its high potential in reducing the maintenance costs and in ensuring the systems safety in several industrial application fields. A growing demand of new SHM systems, permanently embedded into the structures, for savings in weight and cabling, comes from the aeronautical and aerospace application fields. As consequence, the embedded electronic devices are to be wirelessly connected and battery powered. As result, a low power consumption is requested. At the same time, high performance in defects or impacts detection and localization are to be ensured to assess the structural integrity. To achieve these goals, the design paradigms can be changed together with the associate signal processing. The present thesis proposes design strategies and unconventional solutions, suitable both for real-time monitoring and periodic inspections, relying on piezo-transducers and Ultrasonic Guided Waves. In the first context, arrays of closely located sensors were designed, according to appropriate optimality criteria, by exploiting sensors re-shaping and optimal positioning, to achieve improved damages/impacts localisation performance in noisy environments. An additional sensor re-shaping procedure was developed to tackle another well-known issue which arises in realistic scenario, namely the reverberation. A novel sensor, able to filter undesired mechanical boundaries reflections, was validated via simulations based on the Green's functions formalism and FEM. In the active SHM context, a novel design methodology was used to develop a single transducer, called Spectrum-Scanning Acoustic Transducer, to actively inspect a structure. It can estimate the number of defects and their distances with an accuracy of 2[cm]. It can also estimate the damage angular coordinate with an equivalent mainlobe aperture of 8[deg], when a 24[cm] radial gap between two defects is ensured. A suitable signal processing was developed in order to limit the computational cost, allowing its use with embedded electronic devices.
Resumo:
Diffusion on networks is a convenient framework to describe transport systems of different nature (from biological transport systems to urban mobility). The mathematical models are based on master equations that describe the diffusion processes by means of the weighted Laplacian matrix that connects the nodes. The link weight represent the coupling strength between the nodes. In this thesis we cope with the problem of localizing a single-edge failure that occurs in the network. An edge failure is meant to be as a sudden decrease of its transport capacities. An incomplete observation of the dynamical state of the network is available. An optimal clustering procedure based on the correlation properties among the node states is proposed. The network dimensionality is then reduced introducing representative nodes for each cluster, whose dynamical state is observed. We check the efficiency of the failure localization for our clustering method in comparison with more traditional techniques, using different graph configurations.
Resumo:
Different types of water bodies, including lakes, streams, and coastal marine waters, are often susceptible to fecal contamination from a range of point and nonpoint sources, and have been evaluated using fecal indicator microorganisms. The most commonly used fecal indicator is Escherichia coli, but traditional cultivation methods do not allow discrimination of the source of pollution. The use of triplex PCR offers an approach that is fast and inexpensive, and here enabled the identification of phylogroups. The phylogenetic distribution of E. coli subgroups isolated from water samples revealed higher frequencies of subgroups A1 and B23 in rivers impacted by human pollution sources, while subgroups D1 and D2 were associated with pristine sites, and subgroup B1 with domesticated animal sources, suggesting their use as a first screening for pollution source identification. A simple classification is also proposed based on phylogenetic subgroup distribution using the w-clique metric, enabling differentiation of polluted and unpolluted sites.
Resumo:
Though introduced recently, complex networks research has grown steadily because of its potential to represent, characterize and model a wide range of intricate natural systems and phenomena. Because of the intrinsic complexity and systemic organization of life, complex networks provide a specially promising framework for systems biology investigation. The current article is an up-to-date review of the major developments related to the application of complex networks in biology, with special attention focused on the more recent literature. The main concepts and models of complex networks are presented and illustrated in an accessible fashion. Three main types of networks are covered: transcriptional regulatory networks, protein-protein interaction networks and metabolic networks. The key role of complex networks for systems biology is extensively illustrated by several of the papers reviewed.
Resumo:
This work proposes a new approach using a committee machine of artificial neural networks to classify masses found in mammograms as benign or malignant. Three shape factors, three edge-sharpness measures, and 14 texture measures are used for the classification of 20 regions of interest (ROIs) related to malignant tumors and 37 ROIs related to benign masses. A group of multilayer perceptrons (MLPs) is employed as a committee machine of neural network classifiers. The classification results are reached by combining the responses of the individual classifiers. Experiments involving changes in the learning algorithm of the committee machine are conducted. The classification accuracy is evaluated using the area A. under the receiver operating characteristics (ROC) curve. The A, result for the committee machine is compared with the A, results obtained using MLPs and single-layer perceptrons (SLPs), as well as a linear discriminant analysis (LDA) classifier Tests are carried out using the student's t-distribution. The committee machine classifier outperforms the MLP SLP, and LDA classifiers in the following cases: with the shape measure of spiculation index, the A, values of the four methods are, in order 0.93, 0.84, 0.75, and 0.76; and with the edge-sharpness measure of acutance, the values are 0.79, 0.70, 0.69, and 0.74. Although the features with which improvement is obtained with the committee machines are not the same as those that provided the maximal value of A(z) (A(z) = 0.99 with some shape features, with or without the committee machine), they correspond to features that are not critically dependent on the accuracy of the boundaries of the masses, which is an important result. (c) 2008 SPIE and IS&T.
Resumo:
Synchronization plays an important role in telecommunication systems, integrated circuits, and automation systems. Formerly, the masterslave synchronization strategy was used in the great majority of cases due to its reliability and simplicity. Recently, with the wireless networks development, and with the increase of the operation frequency of integrated circuits, the decentralized clock distribution strategies are gaining importance. Consequently, fully connected clock distribution systems with nodes composed of phase-locked loops (PLLs) appear as a convenient engineering solution. In this work, the stability of the synchronous state of these networks is studied in two relevant situations: when the node filters are first-order lag-lead low-pass or when the node filters are second-order low-pass. For first-order filters, the synchronous state of the network shows to be stable for any number of nodes. For second-order filter, there is a superior limit for the number of nodes, depending on the PLL parameters. Copyright (C) 2009 Atila Madureira Bueno et al.
Resumo:
Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H(2)' = 0.3760.10, mean 6 SD) and similar nestedness (NODF = 0.5660.12) than pollination networks. All networks were modular (M=0.32 +/- 0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55 +/- 0.10) and plants (R = 0.68 +/- 0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
A great part of the interest in complex networks has been motivated by the presence of structured, frequently nonuniform, connectivity. Because diverse connectivity patterns tend to result in distinct network dynamics, and also because they provide the means to identify and classify several types of complex network, it becomes important to obtain meaningful measurements of the local network topology. In addition to traditional features such as the node degree, clustering coefficient, and shortest path, motifs have been introduced in the literature in order to provide complementary descriptions of the network connectivity. The current work proposes a different type of motif, namely, chains of nodes, that is, sequences of connected nodes with degree 2. These chains have been subdivided into cords, tails, rings, and handles, depending on the type of their extremities (e.g., open or connected). A theoretical analysis of the density of such motifs in random and scale-free networks is described, and an algorithm for identifying these motifs in general networks is presented. The potential of considering chains for network characterization has been illustrated with respect to five categories of real-world networks including 16 cases. Several interesting findings were obtained, including the fact that several chains were observed in real-world networks, especially the world wide web, books, and the power grid. The possibility of chains resulting from incompletely sampled networks is also investigated.
Resumo:
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
We present a scheme for quasiperfect transfer of polariton states from a sender to a spatially separated receiver, both composed of high-quality cavities filled by atomic samples. The sender and the receiver are connected by a nonideal transmission channel -the data bus- modelled by a network of lossy empty cavities. In particular, we analyze the influence of a large class of data-bus topologies on the fidelity and transfer time of the polariton state. Moreover, we also assume dispersive couplings between the polariton fields and the data-bus normal modes in order to achieve a tunneling-like state transfer. Such a tunneling-transfer mechanism, by which the excitation energy of the polariton effectively does not populate the data-bus cavities, is capable of attenuating appreciably the dissipative effects of the data-bus cavities. After deriving a Hamiltonian for the effective coupling between the sender and the receiver, we show that the decay rate of the fidelity is proportional to a cooperativity parameter that weighs the cost of the dissipation rate against the benefit of the effective coupling strength. The increase of the fidelity of the transfer process can be achieved at the expense of longer transfer times. We also show that the dependence of both the fidelity and the transfer time on the network topology is analyzed in detail for distinct regimes of parameters. It follows that the data-bus topology can be explored to control the time of the state-transfer process.
Resumo:
Large-scale cortical networks exhibit characteristic topological properties that shape communication between brain regions and global cortical dynamics. Analysis of complex networks allows the description of connectedness, distance, clustering, and centrality that reveal different aspects of how the network's nodes communicate. Here, we focus on a novel analysis of complex walks in a series of mammalian cortical networks that model potential dynamics of information flow between individual brain regions. We introduce two new measures called absorption and driftness. Absorption is the average length of random walks between any two nodes, and takes into account all paths that may diffuse activity throughout the network. Driftness is the ratio between absorption and the corresponding shortest path length. For a given node of the network, we also define four related measurements, namely in-and out-absorption as well as in-and out-driftness, as the averages of the corresponding measures from all nodes to that node, and from that node to all nodes, respectively. We find that the cat thalamo-cortical system incorporates features of two classic network topologies, Erdos-Renyi graphs with respect to in-absorption and in-driftness, and configuration models with respect to out-absorption and out-driftness. Moreover, taken together these four measures separate the network nodes based on broad functional roles (visual, auditory, somatomotor, and frontolimbic).