890 resultados para Net heat gain and surface temprature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diurnal cycle is an important mode of sea surface temperature (SST) variability in tropical oceans, influencing air-sea interaction and climate variability. Upper ocean mixing mechanisms are significant at diurnal time scales controlling the intraseasonal variability (ISV) of SST. Sensitivity experiments using an Ocean General Circulation Model (OGCM) for the summer monsoon of the year 2007 show that incorporation of diurnal cycle in the model atmospheric forcings improves the SST simulation at both intraseasonal and shorter time scales in the Bay of Bengal (BoB). The increase in SST-ISV amplitudes with diurnal forcing is approximate to 0.05 degrees C in the southern bay while it is approximate to 0.02 degrees C in the northern bay. Increased intraseasonal warming with diurnal forcing results from the increase in mixed layer heat gain from insolation, due to shoaling of the daytime mixed layer. Amplified intraseasonal cooling is dominantly controlled by the strengthening of subsurface processes owing to the nocturnal deepening of mixed layer. In the southern bay, intraseasonal variability is mainly determined by the diurnal cycle in insolation, while in the northern bay, diurnal cycle in insolation and winds have comparable contributions. Temperature inversions (TI) develop in the northern bay in the absence of diurnal variability in wind stress. In the northern bay, SST-ISV amplification is not as large as that in the southern bay due to the weaker diurnal variability of mixed layer depth (MLD) limited by salinity stratification. Diurnal variability of model MLD is not sufficient to create large modifications in mixed layer heat budget and SST-ISV in the northern bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructured metals are a promising class of biomaterials for application in orthopedics to improve the mechanical performance and biological response for increasing the life of biomedical implants. Surface mechanical attrition treatment (SMAT) is an efficient way of engineering nanocrystalline surfaces on metal substrates. In this work, 316L stainless steel (SS), a widely used orthopedic biomaterial, was subjected to SMAT to generate a nanocrystalline surface. Surface nanocrystallization modified the nature of the oxide layer present on the surface. It increased the corrosion-fatigue strength in saline by 50%. This increase in strength is attributed to a thicker oxide layer, residual compressive stresses, high strength of the surface layer, and lower propensity for intergranular corrosion in the nanocrystalline layer. Nanocrystallization also enhanced osteoblast attachment and proliferation. Intriguingly, wettability and surface roughness, the key parameters widely acknowledged for controlling the cellular response remained unchanged after nanocrystallization. The observed cellular behavior is explained in terms of the changes in electronic properties of the semiconducting passive oxide film present on the surface of 316L SS. Nanocrystallization increased the charge carrier density of the n-type oxide film likely preventing denaturation of the adsorbed cell-adhesive proteins such as fibronectin. In addition, a net positive charge developed on the otherwise neutral oxide layer, which is known to facilitate cellular adhesion. The role of changes in the electronic properties of the oxide films on metal substrates is thus highlighted in this work. This study demonstrates the advantages of nanocrystalline surface modification by SMAT for processing metallic biomaterials used in orthopedic implants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961-2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961-1996) and a test period (19972001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation is mainly divided into two sub-parts: organometallic and bioinorganic/materials projects. The approach for the projects involves the use of two different multinucleating ligands to synthesize mono- and multinuclear complexes. Chapter 2 describes the synthesis of a multinucleating tris(phosphinoaryl)benzene ligand used to support mono-nickel and palladium complexes. The isolated mononuclear complexes were observed to undergo intramolecular arene C¬–H to C–P functionalization. The transformation was studied by nuclear magnetic resonance spectroscopy and X-ray crystallography, and represents a rare type of C–H functionalization mechanism, facilitated by the interactions of the group 10 metal with the arene π–system.

Chapter 3 describes the construction of multinickel complexes supported by the same triphosphine ligand from Chapter 2. This chapter shows how the central arene in the ligand’s triarylbenzene framework can interact with dinickel and trinickel moieties in various binding modes. X-ray diffraction studies indicated that all compounds display strong metal–arene interactions. A cofacial triangulo nickel(0) complex supported by this ligand scaffold was also isolated and characterized. This chapter demonstrates the use of an arene as versatile ligand design element for small molecular clusters.

Chapter 4 presents the syntheses of a series of discrete mixed transition metal Mn oxido clusters and their characterization. The synthesis of these oxide clusters displaying two types of transition metals were targeted for systematic metal composition-property studies relevant to mixed transition metal oxides employed in electrocatalysis. A series of heterometallic trimanganese tetraoxido cubanes capped with a redox-active metal [MMn3O4] (M = Fe, Co, Ni, Cu) was synthesized starting from a [CaMn3O4] precursor and structurally characterized by X-ray crystallography and anomalous diffraction to conclusively determine that M is incorporated at a single position in the cluster. The electrochemical properties of these complexes were studied via cyclic voltammetry. The redox chemistry of the series of complexes was investigated by the addition of a reductant and oxidant. X-ray absorption and electron paramagnetic resonance spectroscopies were also employed to evaluate the product of the oxidation/reduction reaction to determine the site of electron transfer given the presence of two types of redox-active metals. Additional studies on oxygen atom transfer reactivities of [MMn3O4] and [MMn3O2] series were performed to investigate the effect of the heterometal M in the reaction rates.

Chapter 5 focuses on the use of [CoMn3O4] and [NiMn3O4] cubane complexes discussed in Chapter 4 as precursors to heterogeneous oxygen evolution reaction (OER) electrocatalysts. These well-defined complexes were dropcasted on electrodes with/without heat treatment, and the OER activities of the resulting films were evaluated. Multiple spectroscopic techniques were performed on the surface of the electrocatalysts to gain insight into the structure-function relationships based on the heterometallic composition. Depending on film preparation, the Co-Mn-oxide was found to change metal composition during catalysis, while the Ni-Mn oxide maintained the NiMn3 ratio. These studies represent the use of discrete heterometallic-oxide clusters as precursors for heterogeneous water oxidation catalysts.

Appendix A describes the ongoing effort to synthesize a series of heteromultimetallic [MMn3X] clusters (X = O, S, F). Complexes such as [ZnMn3O], [CoMn3O], [Mn3S], and [Mn4F] have been synthesized and structurally characterized. An amino-bis-oxime ligand (PRABO) has been installed on the [ZnMn3O] cluster. Upon the addition of O2, the desymmetrized [ZnMn3O] cluster only underwent an outer-sphere, one-electron oxidation. Efforts to build and manipulate other heterometallic [MMn3X] clusters are still ongoing, targeting O2 binding and reduction. Appendix B summarizes the multiple synthetic approaches to build a [Co4O4]-cubane complex relevant to heterogeneous OER electrocatalysis. Starting with the tricobalt cluster [LCo3(O2CR)3] and treatment various strong oxidants that can serve as oxygen atom source in the presence Co2+ salt only yielded tricobalt mono–oxo complexes. Appendix C presents the efforts to model the H-cluster framework of [FeFe]-hydrogenase by incorporating a synthetic diiron complex onto a protein-supported or a synthetic ligand-supported [Fe4S4]-cluster. The mutant ferredoxin with a [Fe4S4]-cluster and triscarbene ligand have been characterized by multiple spectroscopic techniques. The reconstruction of an H-cluster mimic has not yet been achieved, due to the difficulty of obtaining crystallographic evidence and the ambiguity of the EPR results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Póster presentado en The Energy and Materials Research Conference - EMR2015 celebrado en Madrid (España) entre el 25-27 de febrero de 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an experimental investigation into the interactions that occur between two lean turbulent premixed flames stabilised on conical bluff-bodies when they are moved closer together. Cinematographic OH-PLIF measurements were acquired to investigate adjacent flame front interactions as a function of flame separation distance (S). Flame surface density (FSD) and curvature were determined to characterise the unforced flames. Acoustic forcing was then applied to explore the amplitude dependent thermo-acoustic response. Phase-averaged FSD and global heat release measurements in the form of OH * chemiluminescence were obtained for a range of forcing frequencies (f) and amplitudes (A) as a function of S. As the flames were brought closer together the adjacent annular jets were found to merge into a single jet structure. This caused adjacent flame fronts to merge above the wake region between the two flames at a location determined by the jet efflux (flame angle) and S. This region of flame-flame interaction we refer to as 'interacting region'. In the unforced flames, a trend of increasingly negative curvature for decreasing S produced a small net increase in flame surface area via cusp formation. When subjected to acoustic forcing, S-dependent regimes were found in the global heat release response as a function A. The overall trend showed that the occurrence of jet/flame merging reduces the value of A at which non-linear response occurs. In support of previous findings for flames stabilised along shear layers, the phase-averaged FSD showed that the flame dynamics that drive the thermo-acoustic response result from the roll-up of vortices which generate large-scale vortex-flame interactions. Compared with axisymmetric flames, the occurrence of jet merging alters the vortex-flame interactions resulting in an asymmetric contribution to the heat release between the wall and interacting regions. The majority of the heat release was found to occur in the interacting region through the rapid production and destruction of flame surface area. The occurrence of jet merging and large-scale interactions between adjacent flames result in different physical mechanisms that drive the thermo-acoustic response compared with single axisymmetric flames. © 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface states in semiconductor nanowires (NWs) are detrimental to the NW optical and electronic properties and to their light emission-based applications, due to the large surface-to-volume ratio of NWs and the congregation of defects states near surfaces. In this paper, we demonstrated an effective approach to eliminate surface states in InAs NWs of zinc-blende (ZB) and wurtzite (WZ) structures and a dramatic recovery of band edge emission through surface passivation with organic sulfide octadecylthiol (ODT). Microphotoluminescence (PL) measurements were carried out before and after passivation to study the dominant recombination mechanisms and surface state densities of the NWs. For WZ-NWs, we show that the passivation removed the surface states and recovered the band-edge emission, leading to a factor of ∼19 reduction of PL linewidth. For ZB-NWs, the deep surface states were removed and the PL peaks width became as narrow as ∼250 nm with some remaining emission of near band-edge surface states. The passivated NWs showed excellent stability in atmosphere, water, and heat environments. In particular, no observable changes occurred in the PL features from the passivated NWs exposed in air for more than five months.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing uncertainties in the estimation of land surface evapotranspiration (ET) from remote-sensing data is essential to better understand earth-atmosphere interactions. This paper demonstrates the applicability of temperature-vegetation index triangle (T-s-VI) method in estimating regional ET and evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy) from MODIS/Terra and MODIS/Aqua products in a semiarid region. We have compared the satellite-based estimates of ET and EF with eddy covariance measurements made over 4 years at two semiarid grassland sites: Audubon Ranch (AR) and Kendall Grassland (KG). The lack of closure in the eddy covariance measured surface energy components is shown to be more serious at MODIS/Aqua overpass time than that at MODIS/Terra overpass time for both AR and KG sites. The T-s-VI-derived EF could reproduce in situ EF reasonably well with BIAS and root-mean-square difference (RMSD) of less than 0.07 and 0.13, respectively. Surface net radiation has been shown to be systematically overestimated by as large as about 60 W/m(2). Satisfactory validation results of the T-s-VI-derived sensible and latent heat fluxes have been obtained with RMSD within 54 W/m(2). The simplicity and yet easy use of the T-s-VI triangle method show a great potential in estimating regional ET with highly acceptable accuracy that is of critical significance in better understanding water and energy budgets on the Earth. Nevertheless, more validation work should be carried out over various climatic regions and under other different land use/land cover conditions in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun poly (vinyl alcohol) (PVA) nanofibers mat was collected on indium tin oxide (ITO) substrate. Heat crosslinked nanofibers mat became water-insoluble and firmly fixed on ITO substrate even in water. Oppositely charged poly (allylamine hydrochloride) (PAH) and Dawson-type polyoxometalate (POM), Na6P2Mo18O62 (P2Mo18), were alternately assembled on PVA nanofibers-coated ITO substrate to construct multilayer film through an electrostatic layer-by-layer (LBL) technique. The scanning electron microscope (SEM) images showed that P2Mo18 multilayer film was selectively deposited on PVA nanofibers while the unoccupied space by nanofibers on bare ITO was acted as substrate at the same time because the electrospun nanofibers have larger surface area and surface energy than the flat substrate. The cyclic voltammograms current responses of the P2Mo18 multilayer film on PVA/ITO electrode showed three well-defined redox couples of P2Mo18, but very small because P2Mo18 multilayer film was selectively deposited on PVA nanofibers with poor conductivity. In addition, the photochromic behavior of P2Mo18 multilayer film on PVA/ITO was investigated through UV-vis spectra and electron spin resonance (ESR). Fourier-transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) proved that the charge-transfer complex was formed between PAH and P2Mo18 after UV irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer concentration and shear and stretch field effects on the surface morphology evolution of three different kinds of polymers (polystyrene (PS), polybutadiene (PB) and polystyrene-b-polybutadiene-b-polystyrene (SBS)) during the spin-coating were investigated by means of atomic force microscopy (AFM). For PS and SBS, continuous film, net-like structure and particle structure were observed at different concentrations. For PB, net-like structures were not observed and continuous films and radial array of droplets emerged. Moreover, we compared surface morphology transitions on different substrate locations from the center to the edge. For PS, net-like structure, broken net-like structure and irregular array of particles were observed. For SBS, net-like structure, periodically orientated string-like structure and broken-line structure appeared. But for PB, flower-like holes in the continuous film, distorted stream-like structure and irregular distributions of droplets emerged. These different transitions of surface morphologies were discussed in terms of individual material property.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monthly and annual mean freshwater, heat and salt transport through the open boundaries of the South and East China Seas derived from a variable-grid global ocean circulation model is reported. The model has 1/6degrees resolution for the seas adjacent to China and 30 resolution for the global ocean. The model results are in fairly good agreement with the existing estimates based on measurements. The computation shows that the flows passing through the South China Sea contribute volume, heat and salt transport of 5.3 Sv, 0.57 PW and 184 Ggs(-1), respectively (about 1/4) to the Indonesian Throughflow, indicating that the South China Sea is an important pathway of the Pacific to Indian Ocean throughflow. The volume, heat and salt transport of the Kuroshio in the East China Sea is 25.6 Sv, 2.32 PW and 894 Ggs(-1), respectively. Less than 1/4 of this transport passes through the passage between Iriomote and Okinawa. The calculation of heat balance indicates that the South China Sea absorbs net heat flux from the sun and atmosphere with a rate of 0.08 PW, while the atmosphere gains net heat flux from the Baohai, Yellow and East China Seas with a rate of 0.05 PW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ 1] Intraseasonal variability of Indian Ocean sea surface temperature (SST) during boreal winter is investigated by analyzing available data and a suite of solutions to an ocean general circulation model for 1998 - 2004. This period covers the QuikSCAT and Tropical Rainfall Measuring Mission (TRMM) observations. Impacts of the 30 - 90 day and 10 - 30 day atmospheric intraseasonal oscillations (ISOs) are examined separately, with the former dominated by the Madden-Julian Oscillation (MJO) and the latter dominated by convectively coupled Rossby and Kelvin waves. The maximum variation of intraseasonal SST occurs at 10 degrees S - 2 degrees S in the wintertime Intertropical Convergence Zone (ITCZ), where the mixed layer is thin and intraseasonal wind speed reaches its maximum. The observed maximum warming ( cooling) averaged over ( 60 degrees E - 85 degrees E, 10 degrees S - 3 degrees S) is 1.13 degrees C ( - 0.97 degrees C) for the period of interest, with a standard deviation of 0.39 degrees C in winter. This SST change is forced predominantly by the MJO. While the MJO causes a basin-wide cooling ( warming) in the ITCZ region, submonthly ISOs cause a more complex SST structure that propagates southwestward in the western-central basin and southeastward in the eastern ocean. On both the MJO and submonthly timescales, winds are the deterministic factor for the SST variability. Short-wave radiation generally plays a secondary role, and effects of precipitation are negligible. The dominant role of winds results roughly equally from wind speed and stress forcing. Wind speed affects SST by altering turbulent heat fluxes and entrainment cooling. Wind stress affects SST via several local and remote oceanic processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on surface energy flux data measured by eddy covariance methods from China Flux in alpine swamp meadow of the Qinghai Tibetan Plateau in 2005, the daily and seasonal dynamic of surface energy fluxes and their partitioning, as well as abiotic factors effects were analyzed. The results suggested that LE (Latent heat flux) was the largest consumer of the incoming energy. Rn (Net radiation flux) and LE showed clear seasonal variations in sharp hump and up to their maximums in August and July, respectively. H (Sensible heat flux) increased to its peak in August whereafter declined slowly. Precipitation could reduce the components of surface energy. As to Rn and LE, their correlations with abiotic factors were evident while it was not significant in H. Average EBR (Energy balance ratio) was 50.7 %, which was much larger in growing season than non-growing season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans recognize optical reflectance properties of surfaces such as metal, plastic, or paper from a single image without knowledge of illumination. We develop a machine vision system to perform similar recognition tasks automatically. Reflectance estimation under unknown, arbitrary illumination proves highly underconstrained due to the variety of potential illumination distributions and surface reflectance properties. We have found that the spatial structure of real-world illumination possesses some of the statistical regularities observed in the natural image statistics literature. A human or computer vision system may be able to exploit this prior information to determine the most likely surface reflectance given an observed image. We develop an algorithm for reflectance classification under unknown real-world illumination, which learns relationships between surface reflectance and certain features (statistics) computed from a single observed image. We also develop an automatic feature selection method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The visual analysis of surface shape from texture and surface contour is treated within a computational framework. The aim of this study is to determine valid constraints that are sufficient to allow surface orientation and distance (up to a multiplicative constant) to be computed from the image of surface texture and of surface contours.